PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

CO2 bubble formation on dolomite surface and its influence on surface wettability and flotation of dolomite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dolomite is a common carbonate mineral that can release CO2 gas under acidic conditions. The formation of bubbles on the dolomite surface might play a critical role in the flotation separation of dolomite from apatite. In this study, the CO2 bubbles formation due to CO2 gas releasing from the dolomite surface under acidic condition was observed using an atomic force microscope (AFM). The influence of CO2 bubbles on flotation behavior and surface wettability of dolomite was evaluated through micro-flotation test, contact angle measurement and molecular dynamics simulation. The results indicate that no gas phase points were observed on the dolomite surface in deionized water or sodium oleate (NaOL) solution. CO2 nanobubbles were observed on the dolomite surface treated with NaOL solution at pH 5, with an average size of 44 nm. The presence of CO2 gas layers has a shielding effect on the adsorption of water molecules on the dolomite surface, potentially enhancing the surface hydrophobicity of dolomite. Therefore, CO2 bubbles are beneficial for improving flotation recovery of dolomite. This study inspires the idea of utilizing the released CO2 bubbles in the flotation process of dolomite.
Słowa kluczowe
Rocznik
Strony
art. no. 190254
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • Mining College, Guizhou University, Guiyang 550025, China
  • National and Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang 550025, China
  • Guizhou Key Lab of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang 550025, China
autor
  • Guizhou Academy of Sciences, Guiyang 550001, China
  • National and Local Joint Laboratory of Engineering for Effective Utilization of Regional Mineral Resources from Karst Areas, Guiyang 550025, China
  • Guizhou Key Lab of Comprehensive Utilization of Nonmetallic Mineral Resources, Guiyang 550025, China
autor
  • Mining College, Guizhou University, Guiyang 550025, China
autor
  • Department of Metallurgical Engineering, College of Mines and Earth Sciences, The University of Utah, Salt Lake City, UT 84112, USA
Bibliografia
  • ALEKSANDROVA, T., ELBENDARI, A., NIKOLAEVA, N., 2022. Beneficiation of a low-grade phosphate ore using a reverse flotation technique. Min. Proc. Ext. Met. Rev. 43, 22-27.
  • AMIRECH, A., BOUHENGUEL, M., KOUACHI, S., 2018. Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors. Arab. J. Geosci. 11, 593.
  • CAO, Q.B., CHENG, J.H., WEN, S.M., LI, C.X., BAI, S.J., LIU, D., 2015. A mixed collector system for phosphate flotation. Miner. Eng. 78, 114-121.
  • CAO, Q.B., ZOU, H., CHEN, X.M., YU, X.C., 2020. Interaction of sulfuric acid with dolomite (104) surface and its impact on the adsorption of oleate anion: a DFT study. Physicochem. Probl. Miner. Process. 56(1), 34-42.
  • DU, W.F., LI, X.B., 2023. Insight into the inhibition mechanism of carboxymethyl cellulose for flotation of dolomite and fluorapatite: Experimental and DFT studies. Colloid. Surface. A 674, 131957.
  • EL-MIDANY, A.A., EL-SHALL, H., STANA, R., SOMASUNDARAN, P., 2009a. Mechanisms involved in reactive flotation of dolomite. Miner. Metall. Proc. 26, 94-100.
  • EL-MIDANY, A.A., EL-SHALL, H.E., SVORONOS, S., 2009b. Bubbles growth and their stability in reactive flotation process. Chem. Eng. Process. 48, 1534-1538.
  • EL-MIDANY, A.A., EL-SHALL, H., SVORONOS, S., 2011. Modeling the PVA-coated dolomite floatability in acidic media. Powder Technol. 209, 25-28.
  • FREITAS, A.S.D., MATIOLO, E., RODRIGUES, R.T., 2020. Effect of calcium concentration on calcite flotation from apatite using carbonic gas. REM - International Engineering Journal 73, 253-259.
  • GAO, W.X., ZHANG, Q., LI, X.B., 2023. Interaction of Ca2+, Mg2+ with dolomite (104) surface and its effect on caproic acid adsorption: DFT calculation. Appl. Surf. Sci. 614, 156244.
  • GONG, X.F., YAO, J. YIN, W.Z., YIN, X.M., BAN. X.Q., WANG, Y.L., 2024. Effect of acid corrosion on the surface roughness and floatability of magnesite and dolomite. Green and Smart Mining Engineering 1(1), 118-125.
  • HIGGINS, S.R., HU, X., FENTER, P., 2007. Quantitative lateral force microscopy study of the dolomite (104)-water interface. Langmuir 23, 8909-8915.
  • KANG, Y.T., ZHANG, Q., 2023. The flotation separation of apatite from dolomite using a fatty acid-based collector and the mechanisms of adsorption. Surf. Interface Anal. 55, 138-150.
  • LI, X.B., ZHANG, Q., HOU, B., YE, J.J., MAO, S., LI, X.H., 2017. Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder Technol. 318, 224-229.
  • LIU, X., RUAN, Y.Y., LI, C.X., CHENG, R.J., 2017. Effect and mechanism of phosphoric acid in the apatite/dolomite flotation system. Int. J. Miner. Process. 167, 95-102.
  • LIU, X., ZHANG, Y.M., LIU, T., CAI, Z.L., CHEN, T.J., SUN, K., 2016. Beneficiation of a sedimentary phosphate ore by a combination of spiral gravity and direct-reverse flotation. Minerals 6, 38.
  • MOHAMMADKHANI, M., NOAPARAST, M., SHAFAEI, S.Z., AMINI, A., AMINI, E., ABDOLLAHI, H., 2011. Double reverse flotation of a very low grade sedimentary phosphate rock, rich in carbonate and silicate. Int. J. Miner. Process. 100, 157-165.
  • OWENS, C.L., SCHACH, E., RUDOLPH, M., NASH, G.R., 2018. Surface nanobubbles on the carbonate mineral Dolomite. RSC Adv. 8, 35448.
  • RUAN, Y.Y., HE, D.S., CHI, R.A., 2019. Review on beneficiation techniques and reagents used for phosphate ores. Minerals 9, 253.
  • SALDI, G.D., CAUSSERAND, C., SCHOTT, J., JORDAN, G., 2021. Dolomite dissolution mechanisms at acidic pH: New insights from high resolution pH-stat and mixed-flow reactor experiments associated to AFM and TEM observations. Chem. Geol. 584, 120521.
  • SIS, H., CHANDER, S., 2003. Reagents used in the flotation of phosphate ores: a critical review. Miner. Eng. 16, 577-585.
  • TAO, L., HUANG, J.C., DASTAN, D., WANG, T.Y., LI, J., YIN, X.T., WANG, Q., 2021. New insight into absorption characteristics of CO2 on the surface of calcite, dolomite, and magnesite. Appl. Surf. Sci. 540, 148320.
  • TEAGUE, A.J., LOLLBACK, M.C., 2012. The beneficiation of ultrafine phosphate. Miner. Eng. 27-28, 52-59.
  • VAZIRI HASSAS, B., JIN, J., DANG, L.X., WANG, X.M., MILLER, J.D., 2018. Attachment, coalescence, and spreadingof carbon dioxide nanobubbles at pyrite surfaces. Langmuir 34, 14317-14327.
  • WANG, X.M., MILLER, J.D., MATIOLO, E., FERREIRA, E., AVELAR, A.N., GONÇALVES, K., BARROS, L.A.F., 2013. Understanding the effect of CO2 on apatite flotation from Catalão´s siliceous carbonate phosphate ore, Flotation 2013, Cape Town, South Africa.
  • XIE, J., LI, X.H., MAO, S., LI, L.J., KE, B.L., ZHANG, Q., 2018. Effects of structure of fatty acid collectors on the adsorption of fluorapatite (0 0 1) surface: A first-principles calculations. Appl. Surf. Sci. 444, 699-709.
  • YE, J.J., ZHANG, Q., LI, X.B., WANG, X.C., KE, B.L., LI, X.H., SHEN, Z.H., 2018. Effect of the morphology of adsorbed oleate on the wettability of a collophane surface. Appl. Surf. Sci. 444, 87-96.
  • YIN, W.Z., SUN, H.R., HONG, J.S., CAO, S.H., YANG, B., WON, C., SONG, M., 2019. Effect of Ca selective chelator BAPTA as depressant on flotation separation of magnesite from dolomite. Miner. Eng. 144, 106050.
  • YIN, W.Z., WANG, Y., MA, Y.Q., CHEN, K.Q., 2024. Effects of ultrasonic treatment on the flotation behavior of magnesite and dolomite in a sodium oleate system. Green and Smart Mining Engineering 1(1),76-84.
  • ZHANG, T.B., ZHANG, Q., 2021. Research of nanobubbles enhanced reverse anionic flotation of a mid-low grade phosphate ore. Physicochem. Probl. Miner. Process. 58, 113-125.
  • ZHOU, F., LIU, Q., LIU, X., LI, W.C., FENG, J., CHI, R.A., 2020. Surface electrical behaviors of apatite, dolomite, quartz, and phosphate ore. Front. Mater. 7, 35.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b90499c-489c-41e3-9c8d-ade3d187a729
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.