PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Approximating common random fixed point for two finite families of asymptotically nonexpansive random mappings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to study weak and strong convergence of an implicit random iterative process with errors to a common random fixed point of two finite families of asymptotically nonexpansive random mappings in a uniformly convex separable Banach space.
Rocznik
Tom
Strony
129--148
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
  • Department of Mathematics University of Assiut P.O. Box 71516, Assiut, Egypt
  • Department of Mathematics University of Assiut P.O. Box 71516, Assiut, Egyp
Bibliografia
  • [1] Banerjee S., Choudhury B.S., Composite implicit random iterations for approximating common random fixed point for a finite family asymptotically nonexpansive random operators, Commun. Korean Math. Soc., 26(1)(2011), 23-35.
  • [2] Beg I., Approximaton of random fixed points in normed spaces, Nonlinear Anal., 51(2002), 1363-1372.
  • [3] Beg I., Minimal displacement of random variables under Lipschitz random maps, Topol. Methods Nonlinear Anal., 19(2002), 391-397.
  • [4] Beg I., Random fixed points of random operators satisfying semicontractivity conditions, Math. Japan., 46(1997), 151-155.
  • [5] Beg I., M. Abbas M., Iterative procedure for solutions of random operator equations in Banach spaces, J. Math. Appl., 315(2006), 181-201.
  • [6] Beg I., Abbas M., Random fixed point theorems for a random operator on an unbounded subset of a Banach space, Appl. Math. Lett., 21(10)(2008), 1001-1004.
  • [7] Beg I., Shahzad N., Random fixed point theorems for nonepansive and contractive type random operators on Banach spaces, J. Appl. Math. Stochastic Anal., 7(1994), 569-580.
  • [8] Bharucha-Reid A.T., Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc., 82(1976), 641-657.
  • [9] Choudhury B.S., A random fixed point iteration for three random operators on uniformly convex Banach spaces, Analysis in Theory and Application, 19(2)(2003), 99-107.
  • [10] Choudhury B.S., Convergence of a random iteration scheme to a random fixed point, J. Appl. Math. Stochastic Anal., 8(2)(1995), 139-142.
  • [11] Chang S.S., Cho Y.J., Zhou H., Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc., 38(2001), 1245-1260.
  • [12] Cianciaruso F., Marino G., Wang X., Weak and strong convergence of the Ishikawa iterative process for a finite family of asymptotically nonexpansive mappings, Appl. Math. Comput., 216(2010), 3558-3567.
  • [13] Goebel K., Kirk W.A., A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35(1972), 171-174.
  • [14] Hans O., Reduzierende zulliallige transformaten, Czechoslovak Math. J., 7(1957), 154-158.
  • [15] Hans O., Random operator equations, Proceedings of the fourth Berkeley Symposium on Math. Statistics and Probability II, (1961), 185-202.
  • [16] Hao Y., Wang X., Tong A., Weak and strong convergence theorems for two finite families of asymptotically nonexpansive mappings in Banch spaces, Advances in Fixed Point Theory, 2(4)(2012), 417-432.
  • [17] Itoh S., Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl., 67(1979), 261-273.
  • [18] Opial Z., Weak convergence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73(1967), 591-597.
  • [19] Papageorgiou N.S., Random fixed point theorems for measurable multifunction in Banach spaces, Proc. Amer. Math. Soc., 97(1986), 507-514.
  • [20] Plubtieng S., Kumam P., Wangkeeree R., Approximation of a common random fixed point for a finite family of random operators, Int. J. Math. Math. Sci., 2007(2007) 1-12. D0I:10.1155/2007/69626.
  • [21] Plubtieng S., Kumam P., Wangkeeree R., Random three-step iteration scheme and common random fixed point of three operators, J. Appl. Math. Stoch. Anal., 2007(2007), 1-10.
  • 22] Plubtieng S., Wangkeeree R., Punpaeng R., On the convergence of modified Noor iterations with errors for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 322(2006), 1018-1029.
  • [23] Saluja A.S., Rashwan R.A., Jhade P.K., Approximating common fixed points of finite family of asymptotically nonexpansive non-self mappings, Bulletin Inter. Math. Virtual Institute, 2(2012), 195-204.
  • [24] Schu J., Weak and strong convergence to fixed points of asymptotically non-expansive mappings, Bull. Austral. Math. Soc., 43(1991), 153-159.
  • [25] Spacek A., Zufallige gleichungen, Czechoslovak Math. J., 5(1955), 462-466.
  • [26] Suantai S., Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. Math. Anal. Appl., 311(2005), 506-517.
  • [27] Sun Z., Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 286(1)(2003), 351-358.
  • [28] Tan K.K., Xu K., Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178(2)(1993), 301-308.
  • [29] Xu H.K., Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc., 110(1990), 103-123.
  • [30] Xu H.K., Ori R.G., An implicit iteration process for nonexpansive mappings, Numerical Functional Analysis and Optimization, 22(2001), 767-773.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b7d0572-b4c6-4914-ba4e-e5e4777ca59d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.