PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Indoor Environmental Quality Assessment Model IEQ Developed in ITB. Part 2. Model Reliability Analysis

Identyfikatory
Warianty tytułu
PL
Model do obliczania wskaźnika Jakości Środowiska Wewnętrznego IEQ opracowany w ITB. Cz. 2. Analiza wiarygodności modelu
Języki publikacji
EN
Abstrakty
EN
Indoor environmental quality index (IEQ) involves a set of IEQ sub components, provides an assessment of building user comfort and satisfaction and may be used as a tool to support the design of energy efficient buildings. Unfortunately, the unknown reliability of the IEQ model is a recognized barrier for its wider practical use. The measurement uncertainty based on the physical parameters is first analysed; then corrected by considering the impacts of the instability of the physical parameters. In the end, all sources of uncertainty are recognized, including uncertainties introduced by the probability distribution of panel sensory tests. A procedure for detecting internal incongruity in the IEQ model structure is also provided and a criterion for elimination of this syndrome is proposed. Finally in standardized indoor environment the estimated uncertainty of the IEQindex is presented to be no less than ±17%.
PL
Wskaźnik jakości środowiska wewnętrznego (IEQ) definiuje elementy odczuwania poziomu komfortu i zadowolenia użytkowników budynku ze środowiska i może służyć jako narzędzie w projektowaniu budynków energooszczędnych. Niestety nieznana wiarygodność modelu IEQ stanowi barierę jego szerszego zastosowania. W artykule przedstawiono schemat analizy wiarygodności modelu IEQ, zawierającej oszacowania niepewności pomiarów parametrów fizycznych środowiska następnie skorygowane, przez uwzględnienie zarówno wpływu niestabilności tych parametrów jak i specyfiki panelowych badań sensorycznych postrzegania przez ludzi elementów środowiska. Podano również procedurę wykrywania sprzeczności wewnętrznej w strukturze modelu IEQ i zaproponowano kryterium eliminacji tego syndromu. W znormalizowanym środowisku wewnętrznym szacunkowa niepewność IEQindex będzie niemniejsza niż ±17% odsetka niezadowolonych.
Rocznik
Strony
261--270
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
  • Department of Thermal Physics, Acoustics and Environments, Building Research Institute, Warsaw, Poland
  • Department of Thermal Physics, Acoustics and Environments, Building Research Institute, Warsaw, Poland
Bibliografia
  • [1] prEN15251draft_5. 2014. Guideline for using indoor environmental input parameters for the design and assessment of energy performance of buildings. Brussells: CEN.
  • [2] ASHRAE Guideline 10-2011. Interactions Affecting the Achievement of Acceptable Indoor Environments, ASHRAE.
  • [3] Piasecki M., K. B. Kostyrko. 2018. Indoor environmental quality assessment, part 2: Model reliability analysis, Journal Building Physics, vol. 5, DOI: 10.1177/1744259118754391.
  • [4] Piasecki M., Kostyrko K., Pykacz S. 2017. "Indoor environmental quality assessment: Part I: choice of the indoor environmental quality sub-component models. Journal of Building Physics. 41(3): 264-289.
  • [5] Berg-Munch B., G.H. Clausen, and P.O. Fanger. 1986. "Ventilation requirements for the control of body odor in spaces occupied by women, pp. 195-200. Environ. Int. Vol. 12.
  • [6] JCGM 100:2010 Evaluation of measurement data ‒ Guide to the expression of uncertainty in measurement. BIPM, Sevres 2010.
  • [7] Frontczak M., Andersen RV, Wargocki P. 2012. "Questionnaire survey on factors influencing comfort with indoor environmental quality in Danish housing", Building and Environment (50): 56-54.
  • [8] Bluyssen PM., Roda C., Mandin C., Fossati S., Carrer P., de Kluizenaar Y., i inni. 2016. "Self-reported health and comfort in `modern` office buildings: first results from the European OFFICAIR Study". Indoor Air (26): 298-312.
  • [9] Ncube M. 2012. The development of a methodology for a tool for rapid assessment of indoor environment quality in office buildings in the UK. Doctor Thesis. University of Nottingham.
  • [10] Heinzerling D., Schiavon S., Webster T., Arens E. 2013. "Indoor environmental quality assessment models: A literature review and a proposed weighting and classification scheme". Building and Environment (70(: 210-222.
  • [11] Wong LT, Mui KW, Hui PS. 2008. A multivariate-logistic model for acceptance of indoor environmental quality (IEQ) in offices. Building and Environment (43): 1-6.
  • [12] ASHRAE Performance Measurement Protocols PMP. Best Practices Guide. Atlanta. 2012.
  • [13] Chiang CM, Lai CM. 2002. "A study on the comprehensive indicator of indoor environment assessment for occupants’ health in Taiwan". Building and Environment (37): 387-392.
  • [14] Sakellaris IA, Saraga DE, Mandin C., Roda C., Fossati S., de Kluizenaar Y, et al. 2016 Perceived indoor environment and occupants` comfort in European “modern" office buildings. The OFFICAIR Study. Int. J. Environ. Res. Public Health. 13: 444.
  • [15] Fanger PO. 1988. Ventilation for buildings - design criteria for the indoor environment. European Concerted Action. CEN/TC 156. Brussels.
  • [16] EN-ISO 7726:2002 Ergonomics of the Thermal Environments - Instruments for measuring physical quantities, ISO.
  • [17] Alfano A., Palella BI., Riccio G. 2011. "The role of measurement accuracy on the thermal environment assessment by means of PMV index’. Building and Environment. (46): 1361-1369.
  • [18] Ekici Can. 2016. "Measurement Uncertainty Budget of the PMV Thermal Comfort Equation". International Journal of Thermophysics. 37(48): 1-21.
  • [19] Mui KW, Wong LT. 2006. "Evaluation on sampling point densities for assessing indoor air quantity". Building and environment. (41):1515-1521.
  • [20] Wargocki P., Knudsen HN, Krzyżanowska J. 2010. "Some methodological aspects of sensory testing of indoor air quality". Proceedings: CLIMA. Antalya. 9-12.
  • [21] ISO 16000-28:2012 Indoor air - Part 28 - Determination of odour emissions from building products using test chambers. ISO.
  • [22] Wienold J., Christoffersen J. 2006. "Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras". Energy and Buildings (38): 743-757.
  • [23] EN-ISO 7730:2006 Ergonomics of the thermal environment - Analytical determination and interpretation of thermal comfort using calculation of PMV and PPD indices and local thermal comfort criteria, ISO.
  • [24] Marino C., Nucara A., Pietrafesa M. 2012. "Proposal of comfort classification indexes suitable for both single environments and whole buildings". Available online: Building and Environment (57): 58-67.
  • [25] Report. DELTA. 2007. The "Genlyd" noise annoyance model dose- -response relationships modelled by logistic functions. Danish Electronics, Light &Acoustics. Hoersholm. Denmark.
  • [26] Hunt DRG. 1980. "Predicting artificial lighting use ‒ a method based upon observed patterns of behaviour". Lighting Research & Technology. 12(1): 7-14 D.
  • [27] Haldi F. 2010. Monografia: Towards a unified model of occupants’ behaviour and comfort for building energy simulation. Docteur These, Ѐcole Polytechnique Fédérale De Lausanne, Lausanne.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b7cea84-befb-4692-8a04-07948acb5efa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.