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Abstract. Our goal is to study the Pareto optimal control system for a nonlinear
one-dimensional extensible beam equation and its Galerkin approximation. First we consider
a mathematical model of the beam equation which was obtained by S. Woinowsky-Krieger in
1950. Next we consider the Pareto optimal control problem based on this equation. Further,
we describe the approximation of this system. We use the Galerkin method to approximate
the solution of this control problem with respect to a spatial variable. Based on the standard
finite dimensional approximation we prove that as the discretization parameters tend to zero
then the weak accumulation point of the solutions of the discrete optimal control problems
exist and each of these points is the solution of the original Pareto optimal control problem.
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1. INTRODUCTION

In this paper, we consider a nonlinear extensible beam model with time and length
finite. The one-dimensional nonlinear beam equation,

∂2y

∂t2
+ α

∂4y

∂x4 −
[
β + γ

l∫
0

(
∂y

∂x

)2
dx

]
∂2y

∂x2 = f(t, x) (1.1)

was proposed by S. Woinowsky-Krieger [20] for the transverse deflection y at time t
and position x along the extensible beam. The time t ∈ [0, T ] for T <∞ and the point
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of position on beam x ∈ [0, l] where l < ∞ is the length of the beam. The parame-
ters α, β, and γ are positive physical constants dependent of the Young’s modulus,
the cross-sectional second moment of the area, the density and the cross-sectional
area. The nonlinear term represents the change in the tension of the beam due to its
extensibility. The term f represents an external load. The initial conditions are

y(0, x) = y0(x) and ∂y(0, x)
∂t

= y1(x). (1.2)

We consider, from the mechanical point of view, the boundary conditions corresponding
to clamped ends

y(t, 0) = y(t, l) = ∂y(t, 0)
∂x

= ∂y(t, l)
∂x

= 0 (1.3)

and the boundary conditions corresponding to hinged ends

y(t, 0) = y(t, l) = ∂2y(t, 0)
∂x2 = ∂2y(t, l)

∂x2 = 0. (1.4)

For a system governed by the nonlinear beam equation (1.1) with initial conditions
(1.2) and boundary conditions (1.3) or (1.4) some results concerning the existence
and uniqueness of solutions were published by many researchers. We will give several
for example A.S. Ackleh et al. [1], J.M. Ball [4], M.L. Oliveira and O.A. Lima [16],
D.C. Pereira [17], and their references. Some questions of optimal control problems for
the beam equation were studied by M. Barboteu et al. [5], M. Galewski [9], I. Hlavác̆ek
and J. Lovĭsek [10], J. Hwang [11], I. Sadek et al. [18] and by many others.

The Galerkin approximation methods can be applied to the boundary problems
as well as to control systems. The Galerkin method to solve the boundary beams
system was investigated in articles [1,4,16,17]. Semidiscrete Galerkin approximation of
control problems for linear and nonlinear elliptic, parabolic and second-order evolution
equations was studied for example in [2,14,18,19]. In paper [3] the authors studied the
effects of two damping parameters for a flexible beam. They used the Galerkin method
in such a way that the partial differential equation transforms into ordinary differential
equations in the time domain. In our papers [7, 8, 12] we applied the Galerkin method
to different types of distributed parameter systems transforming them to lumped
parameter systems. Pareto optimal control problems for distributed parameter systems
have been studied for example in [13].

This paper is organized as follows: In Section 2 we analyze the properties of an
operator from the control space into the spaces of solutions of equation (1.1). Next, in
Section 3 we study the quadratic Pareto optimal control problem. In Section 4, we
present the Galerkin approximation of our optimal problem. In Section 5 we prove
the convergence of the solutions of discrete optimal problems to the solution for the
original one.

2. PRELIMINARIES

Firstly, we establish the existence of a weak solution of equation (1.1) subject to the
initial conditions (1.2) and the boundary conditions (1.3) or (1.4). Secondly, we define
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an operator F acting from the control space U into the space of solutions and we
establish that F is Lipschitz continuous and a weakly continuous mapping.

In what follows we use the standard notation for the Lebesgue Lp and Sobolev
Hk spaces. For brevity of notation, from now on primes denote differentiation with
respect to time t, i.e. y′ = ∂y

∂t and y′′ = ∂2y
∂t2 , while derivatives with respect to distance

x along the beam are written by subscripts x, i.e. yx = ∂y
∂x and yxx = ∂2y

∂x2 .
We set S = (0, T ), Q = S × (0, l) while V = H2

0 (0, l) for clamped ends or
V = H2(0, l)∩H1

0 (0, l) (the closed subspace of H2(0, l)) for hinged ends. These spaces
are equipped with standard norms. The embedding V ⊂ H is continuos, dense and
compact. Identifying H with its dual we have the evolution triple V ⊂ H ⊂ V ∗ (see
[6, p. 391]). The duality pairing 〈ϕ,ψ〉 of V ∗ and V is identical with the inner product
(ϕ,ψ) on H if ϕ ∈ H.

Let (see [15, p. 108])

L2(S;W ) =
{
ω : S →W |

∫
S

‖ω(t)‖2
W dt <∞

}

and
L∞(S;W ) =

{
ω : S →W | ess sup

t∈S
‖ω(t)‖W <∞

}
,

with the standard norms, where W is any Banach space.

We introduce still following a Sobolev-like space (see [6, pp. 394–395]).

W(S) =
{
ω ∈ L2(S;V ) , ω′ ∈ L2(S;H) and ω′′ ∈ L2(S;V ∗)

}
with the norm

‖ω‖W = ‖ω‖L2(S;V ) + ‖ω′‖L2(S;H) + ‖ω′′‖L2(S;V ∗).

We define now a weak (variational) formulation of the equation (1.1) with initial
condition (1.2) and boundary conditions (1.3) or (1.4) (see [4, 11]).

Definition 2.1. A function y is said to be a weak solution of the equation (1.1) with
the initial condition (1.2) and the boundary conditions (1.3) or (1.4) iff y ∈ W and y
satisfies the equations:

〈y′′(t), ψ〉+ α(yxx(t), ψxx
)
−
(
β + γ

l∫
0
|yx(t)|2dx

)
(yxx(t), ψ) = (f(t), ψ),

for all ψ ∈ V and a.e. t ∈ S,
y(0) = y0 and y′(0) = y1 for y0 ∈ V, y1 ∈ H,

(2.1)

where (ϕ,ψ) =
∫ l

0 ϕ(x)ψ(x)dx (the inner product on H).
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Remark 2.2.

a) The weak formulation implies that the derivatives of the solution of the equation
(1.1) are satisfied in the sense of distributions.

b) The solution y of (2.1) does not have to satisfy the boundary conditions
yxx(0) = yxx(l) = 0 in any classical sense (see [4]).

We state the following existence theorem (see [4, 11]).

Theorem 2.3. Let f ∈ L2(Q), y0 ∈ V and y1 ∈ H. Then, there exists a unique weak
solution y of the initial-boundary problems (1.1)–(1.4) with the following regularity
y ∈ W(S) ∩ L∞(S;V ) and y′ ∈ L∞(S;H).

Let us put in (2.1) f = g +Bu, where g ∈ L2(Q), u ∈ U (the control space) and
B ∈ L(U ;L2(Q)). Now the equation (2.1) has a form

〈y′′(t), ψ〉+ α(yxx(t), ψxx
)
−
(
β + γ

l∫
0
|yx(t)|2dx

)
(yxx(t), ψ)

=
(
g(t) + (Bu)(t), ψ

)
for all ψ ∈ V and a.e. t ∈ S,

y(0) = y0 and y′(0) = y1 for y0 ∈ V, y1 ∈ H.

(2.2)

We define a nonlinear operator F from the separable Hilbert space U into a space

X =
4∏
i=1

L2(S;H) by

F (u) = (y, y′, yx, yxx),

where y is the unique weak solution of (2.2). The norm in the space X is given by the
form

‖F (u)‖2
X =

T∫
0

[
‖y(t)‖2

H + ‖y′(t)‖2
H + ‖yx(t)‖2

H + ‖yxx(t)‖2
H

]
dt

=
T∫

0

[
‖y(t)‖2

V + ‖y′(t)‖2
H

]
dt.

Lemma 2.4. If the assumptions of Theorem 2.3 are satisfied with f = g +Bu, where
g ∈ L2(Q), U is a separable Hilbert space and the operator B is linear and bounded,
then the operator F is locally Lipschitz continuous and a weakly continuous map.

Proof. The proof is split into three steps. Firstly, we prove a priori estimates. We start
by deriving some a priori bounds for the solution y and its derivatives. In first part of
(2.1) we set ψ = y′(t) and using the integration by parts formula (see [6, p. 397]), we
obtain

1
2
d

dt

[
‖y′(t)‖2

H+α‖yxx(t)‖2
H

]
−
(
β+γ‖yx(t)‖2

H

)(
yxx(t), y′(t)

)
=
(
g(t)+(Bu)(t), y′(t)

)
.

(2.3)
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By using the formulas:

d

dt
‖yx(t)‖2

H = −2
(
yxx(t), y′(t)

)
and

d

dt
‖yx(t)‖4

H = −4‖yx(t)‖2
H

(
yxx(t), y′(t)

)
(see [4]) and integrating (2.3) over an arbitrary interval [0, t] ⊂ [0, T ] we obtain

‖y′(t)‖2
H + α‖yxx(t)‖2

H + β‖yx(t)‖2
H + 1

2γ‖yx(t)‖4
H

= ‖y1‖H + α‖y0xx‖2
H + β‖y0x‖2

H + 1
2γ‖y0x‖4

H + 2
t∫

0

(
g(s) + (Bu)(s), y′(s)

)
ds.

From this by Schwartz’s and Gronwall’s inequalities (see [6, pp. 127–128]) and by
2ab ≤ 1

εa
2 + εb2 for ε > 0 (see [15, p. 112]) we have

‖y′(t)‖2
H + ‖yxx(t)‖2

H + ‖yx(t)‖2
H ≤ C1(1 + ‖u‖2

U ) (2.4)

for any constant C1 > 0 (C1 dependent on ‖y0‖V , ‖y1‖H and ‖g‖L2(Q)).
From (2.4) and the Poincaré inequality (see [21, p. 59]) we obtain

‖y′(t)‖2
H + ‖y(t)‖2

V ≤ C2(1 + ‖u‖2
U ) (2.5)

for C2 > 0 and a.e. t ∈ [0, T ]. Integrating (2.5) over the interval [0, T ] we state the
following inequality

‖F (u)‖2
X ≤ C3(1 + ‖u‖2

U ) ≤ C3(1 + ‖u‖U )2 (2.6)

for any constant C3 > 0.

Now, we shall prove that the operator F is a locally Lipschitz’s map. Let u1, u2 ∈ U .
For i = 1, 2 we have from (2.1) with f = g +Bu

〈y′′i (t), ψ〉+ α(yixx(t), ψxx
)
−
(
β + γ‖yix(t)‖2

H

)
(yixx(t), ψ)

= (g(t) + (Bui)(t), ψ) for all ψ ∈ V and a.e. t ∈ S,

yi(0) = y0 and y′i(0) = y1 for i = 1, 2.

(2.7)

From Theorem 2.3 we know that the problem (2.7) for i = 1, 2 has exactly one
solution y1, y2 ∈ W(S) ∩ L∞(S;V ) and y′1, y′2 ∈ L∞(S;H).

From that we have (subtracting the two equations)

〈y′′1 (t)− y′′2 (t), ψ〉+ α(y1xx(t)− y2xx(t), ψxx
)

=

=
((
β + γ‖y1x(t)‖2

H

)
y1xx(t)−

(
β + γ‖y2x(t)‖2

H

)
y2xx(t), ψ

)
= ((B(u1 − u2))(t), ψ) for all ψ ∈ V and for a.e. t ∈ S.

(2.8)
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Let us put ψ = y′1(t)− y′2(t). (2.8) gives

〈y′′1 (t)− y′′2 (t), y′1(t)− y′2(t)〉+ α(y1xx(t)− y2xx(t), y′1xx(t)− y′2xx(t)) =
= β (y1xx(t)− y2xx(t), y′1(t)− y′2(t))

+
(
γ‖y1x(t)‖2

H y1xx(t)− γ‖y2x(t)‖2
H y2xx(t), y′1(t)− y′2(t)

)
+

+ ((B(u1 − u2))(t), y′1(t)− y′2(t)) for all ψ ∈ V and for a.e. t ∈ S.

(2.9)

Now we take up the nonlinear part of (2.9).

(γ‖y1x(t)‖2
H y1xx(t)− γ‖y2x(t)‖2

H y2xx(t), y′1(t)− y′2(t))
= (γ‖y1x(t)‖2

H(y1xx(t)− y2xx(t))
+ γ

(
‖y1x(t)‖2

H − ‖y2x(t)‖2
H)y2xx(t), y′1(t)− y′2(t)

)
= γ‖y1x(t)‖2

H(y1xx(t)− y2xx(t), y′1(t)− y′2(t))+
+ γ(‖y1x(t)‖H − ‖y2x(t)‖H)(‖y1x(t)‖H
+ ‖y2x(t)‖H)(y2xx(t), y′1(t)− y′2(t))
≤ γ‖y1x(t)‖2

H‖y1xx(t)− y2xx(t)‖H‖y′1(t)− y′2(t)‖H+
+ γ(‖y1x(t)‖H + ‖y2x(t)‖H)‖y2xx(t)‖(‖y1x(t)‖H
− ‖y2x(t)‖H)‖y′1(t)− y′2(t)‖
≤ γ‖y1x(t)‖2

H(‖y1xx(t)− y2xx(t)‖2
H + ‖y′1(t)− y′2(t)‖2

H)
+ γ(‖y1x(t)‖H + ‖y2x(t)‖H) ‖y2xx(t)‖ (‖y1x(t)− y2x(t)‖2

H

+ ‖y′1(t)− y′2(t)‖2
H)

≤ C4(‖y′1(t)− y′2(t)‖2
H + ‖y1xx(t)− y2xx(t)‖2

H),

(2.10)

where C4 > 0 is a constant depending only on the data and the imbedding constant
from Sobolev spaces H2 into H1.

Finally, combining (2.10) with (2.9) we arrive at the following equality
d
dt

[
‖y′1(t)− y′2(t)‖2

H + α‖y1xx(t)− y2xx(t)‖2
H

]
≤

≤ C5(‖y′1(t)− y′2(t)‖2
H + ‖y1xx(t)− y2xx(t)‖2

H) + ‖(B(u1 − u2))(t)‖2
H

for a.e. t ∈ S and a constant C5 > 0.

(2.11)

By integration (2.11) over an arbitrary interval [0, t] ⊂ [0, T ] we obtain

‖y′1(t)− y′2(t)‖2
H + α‖y1xx(t)− y2xx(t)‖2

H ≤

≤ C5
∫ t

0 (‖y′1(s)− y′2(s)‖2
H + ‖y1xx(s)− y2xx(s)‖2

H)ds+ L‖u1 − u2‖2
U

for a.e. t ∈ S and a constant C5 > 0, where L > 0 (because B ∈ L(U ;L2(Q)).

(2.12)

From (2.12) we can prove that the operator F is a locally Lipschtz map by analogy
with the proof of inequality (2.6).

Thirdly, we shall prove that the operator F is a weakly continuous mapping. Let
(un) denote a sequence such that

un → u weakly in U. (2.13)
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Let yn = y(un) satisfy equation (2.1) with f = g +Bun, i.e.

〈y′′n(t), ψ〉+ α
(
ynxx(t), ψxx

)
−
(
β + γ‖ynx(t)‖2

H

)(
ynxx(t), ψ

)
=
(
g(t) + (Bun)(t), ψ

)
for all ψ ∈ V and a.e. t ∈ S,

yn(0) = y0 and y′n(0) = y1.

(2.14)

From Theorem 2.3 we know that problem (2.14) has exactly one weak solution yn for
n ∈ N . From the assumptions of the Lemma and from the first part of the proof we
obtain

‖y′n(t)‖2
H + ‖yn(t)‖2

V ≤ C6
(
1 + ‖un‖2

U

)
(2.15)

for certain C6 > 0 and a.e. t ∈ [0, T ]. From the last inequality it follows that there
exists a subsequence, that we also denote (yn), converging weakly to an element y
in L2(S, V ) and strongly to y in L2(S;H) since the embedding V ⊂ H is compact.
From (2.15) we obtain also that the subsequence of derivatives (y′n) converges weakly
to y′ in L2(S,H) and the nonlinear term ‖ynx‖2ynxx converges weakly to ‖yx‖2yxx in
L2(S;H) (see proof of Theorem 1 in [4]). These convergences show that the function
y verifies the first part of (2.1).

It remains to be shown that the initial conditions (1.2) are satisfied by y (the
second part of (2.1)).

As yn → y and y′n → y′ weakly in L2(S;H) and (y′′n(t), ϕ) → (y′′n(t), ϕ) for all
ϕ ∈ D(0, T ) are satisfied then yn(0)→ y(0) = y0 and y′n(0)→ y′(0) = y1 (see proof
Theorem 1 in [4]). We conclude that y is the solution of (2.1) for u = u. From the fact
that there is only one solution of problem (2.1), we deduce that not only a subsequence,
but the original sequence (yn) converges weakly to y. Also the sequences (y′n), (ynx),
(ynxx) converge weakly in L2(S;H) to y′, yx, yxx, respectively. This completes the
proof of Lemma 2.4.

Remark 2.5. Lemma 2.4 gives continuous dependence of the state of the system
from the control variable.

3. QUADRATIC PARETO OPTIMAL CONTROL PROBLEM

Many engineering and economic applications such as optimal design problems, en-
vironmental control problems, production problems can lead to an optimal control
formulation where several objective functions that need to be optimized simultaneously.
The statement of the Pareto optimal problems for distributed parameter systems are
defined for example in [13, pp. 28–41].
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We consider the following objective functions:

J1(u) =
T∫

0

l∫
0

|y(t, x)− yd|2dxdt = ‖y − yd‖2
L2(Q),

J2(u) =
T∫

0

l∫
0

|y′(t, x)− y1
d|2dxdt = ‖y′ − y1

d‖2
L2(Q),

J3(u) =
T∫

0

l∫
0

|yx(t, x)− y2
d|2dxdt = ‖yx − y2

d‖2
L2(Q),

J4(u) =
T∫

0

l∫
0

|yxx(t, x)− y3
d|2dxdt = ‖yxx − y3

d‖2
L2(Q),

J5(u) = ‖u‖2
U .

The function y = y(u) is the weak solution of the state equations

〈y′′(t), ψ〉+ α
(
yxx(t), ψxx

)
−
(
β + γ‖yx(t)‖2)(yxx(t), ψ

)
=
(
g(t) + (Bu)(t), ψ

)
for all ψ ∈ V and a.e. t ∈ S,

y(0) = y0 and y′(0) = y1.

(3.1)

The u ∈ U is a control and yd, y1
d, y

2
d, y

3
d, y0, y1 are desired functions with respective

spaces.
The objective funtionals Ji for i ∈ N5 = {1, 2, 3, 4, 5} represent the different types of
energy of the beam.

Problem (P). We study the following Pareto optimal control problem:
minimize the vector objective function

J(u) =
(
J1(u), J2(u), J3(u), J4(u), J5(u)

)
(3.2)

for u ∈ U , where y = y(u) is a unique solution of equation (3.1).
Definition 3.1. A control u◦ ∈ U is called a Pareto optimal control for Problem (P )
iff there is no u1 ∈ U and u1 6= u◦ such that Ji(u1) ≤ Ji(u◦) for i ∈ N5 with strict
inequality for at least one i ∈ N5 (see [13, p. 14] et next).

In general, the multiobjective optimization problems are usually solved by scalar-
ization. The method of scalar optimization depends on certain auxiliary parameters
λi for i ∈ N5 (see [13, pp. 14–15]).

With Problem (P ) the following scalar one is associated:

Problem (S). We study the following optimal control problem:
minimize the scalar function

Jλ(u) =
5∑
i=1

λiJi(u) (3.3)
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for u ∈ U , λi > 0 for i ∈ N5 and
∑5
i=1 λi = 1, where y = y(u) is a unique solution of

the state equations (3.1).
The objective functional Jλ represents the total energy of the beam.

Remark 3.2. In general, we can consider the Pareto and scalar control problems with
the admissible set of controls Uad ⊂ U , where Uad is convex, closed with non-empty
interior. The theorems and proofs can be easily extended for this case.

Lemma 3.3. If u◦ is the solution of Problem (S) with fixed λi > 0 for i ∈ N5 and∑5
i=1 λi = 1, then u◦ is the Pareto optimal solution to Problem (P ).

The proof is immediate.

Theorem 3.4. Let g ∈ L2(Q), y0 ∈ V , y1 ∈ H, and the operator B ∈ L(U ;L2(Q)),
where U is a separable Hilbert space and yd, y1

d, y
2
d, y

3
d ∈ L2(Q), then the scalar control

Problem (S) has at least one optimal solution u◦ ∈ U such that Jλ(u◦) = infu∈U Jλ(u).

Proof. Let (un) be a minimizing sequence for functional (3.3), i.e. un ∈ U for n ∈ N
and limn→∞ Jλ(un) = infu∈U Jλ(u).

Since the functional Jλ is coercive, then the sequence (un) is bounded in U (see
[15, p. 14]). Therefore, there exists a subsequence, which we also denote by (un)
such that un → v, weakly in U . Let yn = y(un) be the solution of (3.1) for u = un.
Lemma 2.4 implies that the sequences of weak solutions yn corresponding to controllers
un satisfy the convergences:

yn −→ y = y(v) strongly in L2(S;H),
y′n −→ y′ = y′(v) weakly in L2(S;H),
ynx −→ yx = yx(v) weakly in L2(S;H)

and

ynxx −→ yxx = yxx(v) weakly in L2(S;H).

Since the norm is weakly lower semicontinuous, we get

inf
u∈U

Jλ(un) = lim
n→∞

Jλ(un) = lim
n→∞

inf Jλ(un) ≥ Jλ(v).

From this Jλ(v) = infu∈U Jλ(u) = Jλ(u◦).
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4. GALERKIN APPROXIMATION
OF THE PARETO OPTIMAL CONTROL PROBLEM

Here we recall some known results concerning the finite dimensional Galerkin approxi-
mation (see [21, p. 271]). They are basic for the convergence analysis of our optimal
problem.

We consider a family {Vn}n∈G of finite dimensional subspaces of V which satisfies
the following conditions:

∀h1, h2 ∈ G (h1 > h2 =⇒ Vh1 ⊂ Vh2) and
⋃
h∈G

Vh = V, (4.1)

where the set G ⊂ (0, 1] of parameters h has an accumulation point at 0. The
approximation of space H is the same family {Vh}h∈G with an induced norm with H.
The approximation of the spaces L2(S;V ) and L2(S;H) is understood here as a family
of spaces {L2(S;Vh)}h∈G from respective norms.

As an approximate solution of equations (3.1) we mean the family of functions
yh ∈ L2(S;Vh) which are the solutions of the following system

〈y′′h(t), ψh〉+ α
(
yhxx(t), ψhxx

)
−
(
β + γ‖yhx(t)‖2

H

)(
yhxx(t), ψh

)
=
(
g(t) + (Bu)(t), ψh

)
for all ψh ∈ Vh and for a.e. t ∈ S,

yh(0) = y0h and y′h(0) = y1h,

(4.2)

where y0h and y1h are the orthogonal projections y0 and y1 onto Vh with the respective
norms. From Theorem 2.3 we conclude that for each h ∈ G the equation (4.2) has
a unique solution yh ∈ L2(S;Vh).

As an approximation of control space U we take a family {Uk}k∈K of finite
dimensional subspaces of U which satisfies the following conditions:

∀k1, k2 ∈ K (k1 > k2 =⇒ Uk1 ⊂ Uk2) and
⋃
k∈K

Uk = U, (4.3)

where the set K ⊂ (0, 1] of parameters k has an accumulation point at 0.
Our objective approximated functionals have the following forms

J1h(uk) = ‖yh − ydh‖2
L2(Q),

J2h(uk) = ‖y′h − y1
dh‖2

L2(Q),

J3h(uk) = ‖yhx − y2
dh‖2

L2(Q),

J4h(uk) = ‖yhxx − y3
dh‖2

L2(Q),

J5k(uk) = ‖uk‖2
U ,

where ydh, y1
dh, y2

dh, y3
dh are the orthogonal projections of the elements yd, y1

d, y2
d, y3

d,
respectively, onto the space L2(S;Vh) with the norm from L2(S;H) and uk ∈ Uk.
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We have to study the following approximated scalar control Problem (Shk):
find a minimizer u◦kh ∈ Uk such that

inf
uk∈Uk

Jλhk(uk) = Jλhk(u◦kh),

where Jλhk(uk) =
4∑
i=1

λiJih(uk) + λ5J5k(uk) and yhk = yh(uk) is a solution of the

equation (4.2) for u = uk ∈ Uk. In other words yhk is the approximate state associated
witch control uk ∈ Uk. The scalar controls Problems (Shk) are the lumped parameter
systems.

The optimal solution of the approximate Problem (Shk) can be characterized
analogously to the considered continuos Problem (S) in Section 3.
Theorem 4.1. Under the assumptions of Theorem 3.4, the approximated scalar control
Problem (Shk) has at least one solution u◦kh ∈ Uk.
The theorem can be proved in the same way as Theorem 3.4.

5. CONVERGENCE OF THE SOLUTIONS OF APPROXIMATED PROBLEMS
TO THE ORIGINAL

In this section, we prove the main result of our paper, convergence of solutions of
approximated Problems (Shk) to the original Problem (S). We start with a Lemma,
whose proof follows immediately from Lemma 2.4 and from our assumptions of Galerkin
approximations.
Lemma 5.1. Let (uk) be any sequence of elements in Uk and (yhk) be the sequence
of solutions of system (4.2) for u = uk. Let the assumptions of Lemma 2.4 and the
properties of Galerkin approximations (4.1) and (4.3) be satisfied.
(i) If uk −−−→

k→0
u weakly in U , then

yhk −−−−→
h,k→0

y weakly in L2(S;V ),

y′hk −−−−→
h,k→0

y′ weakly in L2(S;H),

yhkx −−−−→
h,k→0

yx weakly in L2(S;H)

and

yhkxx −−−−→
h,k→0

yxx weakly in L2(S;H).

(ii) If uk −−−→
k→0

u strongly in U , then

yhk −−−−→
h,k→0

y strongly in L2(S;V ),

where the function y is the unique solution of system (3.1) for u = u.
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Now, we have to analyse the question of convergence of approximate solutions u◦kh
of Problem (Shk) to solution u◦ of Problem (S).

Theorem 5.2. Let the assumptions of Theorem 2.3 and approximated conditions (4.1)
and (4.3) be satisfied. Then there exist weak condensation points of a set of solutions
of the scalar control Problems (Shk) in U and each of these points is the solution of
the scalar optimal Problem (S).

Proof. The proof is split into two steps. First, we have to prove that the sequence (u◦kh)
of solutions of the scalar control Problem (Shk) is a minimizing sequence for functional
(3.3). Indeed. For u◦ ∈ U , the solution of the scalar control Problem (S), according to
(4.3), there exists a sequence (u◦k) such that u◦k ∈ Uk for all k ∈ K, and u◦k −−−→

k→0
u◦

strongly in U . By Lemma 5.1 (second part), the solution of (4.2), corresponding to
the control u = u◦k, y◦hk = yh(u◦k) −−−−→

h,k→0
y◦ strongly in L2(S;V ), where y◦ = y(u◦) is

the solution of (3.1) corresponding to the control u = u◦ ∈ U . Then, as

inf
u∈U

Jλ(u) = Jλ(u◦) ≤ Jλ(u◦kh) ≤ Jλ(u◦k)

and functional Jλ is continuous, we have lim
k,h→0

Jλ(u◦kh) = Jλ(u◦). Hence we obtain

that (u◦kh) is a minimizing sequence for functional Jλ.

Second, we have to prove that the sequence (u◦kh) has a subsequence weakly convergent
to one of the solutions of the scalar control Problem (S). Since functional (3.3) is
coercive, then the sequence (u◦kh) is bounded in U . There is a subsequence, denoted
again by (u◦kh), such that u◦kh −−−−→

k,h→0
u weakly in U . Then Lemma 5.1 (first part)

implies that the solutions of (3.1) corresponding to controls u◦kh are convergent
weakly to y = y(u) and their derivatives, too. Since, the norm is functional weakly
lower-semicontinuous,

inf
u∈U

Jλ(u) = lim
k,h→0

Jλ(u◦kh) = lim
k,h→0

inf Jλ(u◦kh) ≥ Jλ(u).

This implies that u is one of solutions of the scalar control Problem (S).

Remark 5.3. From Lemma 3.3 we obtain that the results of Theorem 5.2 are also
the conclusion to our Pareto optimal Problem (P ).
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