PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Soret and Dufour effects on an unsteady MHD flow about a permeable rotating vertical cone with variable fluid properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the present work is to examine the characteristics of unsteady incompressible magnetohydrodynamic fluid flow around a permeable rotating vertical cone. The effects of thermal radiation, viscous dissipation, and the Soret and Dufour effects are investigated in the analysis of heat and mass transfer. The viscosity of the fluid is considered inversely proportional to the temperature, and the thermal conductivity of the fluid is considered directly proportional to the temperature. The governing equations are converted into ordinary differential equations using suitable similarity transformations, which are then solved numerically using bvp4c from MATLAB. Results obtained in this study are in excellent correlation with previously conducted studies. The results demonstrate that the Dufour and Soret effects subsequently reduce the heat transit rate (by 3.3%) and mass transit rate (by 1.2%) of the system. It is also detected that fluids with higher viscosity tend to increase tangential skin friction (+8.9%) and azimuthal skin friction (+8.3%). The heat transit rate of the system is found to be more efficient for fluids with higher viscosity and lower thermal conductivity and Eckert numbers. Furthermore, the thickness of the momentum, thermal, and concentration boundary layers significantly reduces while the heat and mass transit rates (+17.8% and +18.3%, respectively) of the system become more efficient for greater values of the unsteadiness parameter.
Rocznik
Strony
75--86
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
  • Kohima Science College, Jotsoma, Kohima 797001, India
  • Kohima Science College, Jotsoma, Kohima 797001, India
Bibliografia
  • [1] Tien, C.L., & Tsuji, I.J. (1965). A theoretical analysis of laminar forced flow and heat transfer about a rotating cone. Journal of Heat Transfer, 87(2), 184–190. doi: 10.1115/1.3689069
  • [2] Hering, R.G., & Grosh, R.J. (1962). Laminar free convection from a non-isothermal cone. International Journal of Heat and Mass Transfer, 5(11), 1059–1068. doi: 10.1016/0017-9310(62)90059-5
  • [3] Sparrow, E.M., & Cess, R.D. (1962). Magnetohydrodynamic flow heat transfer about rotating disk. Journal of Applied Mechanics, 29, 181–187.
  • [4] Chamkha, A.J. (1996). Non-darcy hydromagnetic free convection from a cone and a wedge in porous media. International Communications in Heat and Mass Transfer, 23(6), 875–887. doi: 10.1016/0735-1933(96)00070-X
  • [5] Takhar, H.S., Chamkha, A.J., & Nath, G. (2003). Unsteady mixed convection flow from a rotating vertical cone with a magnetic field. Heat and Mass Transfer, 39, 297–304. doi: 10.1007/s00231-002-0400-1
  • [6] Ece, M. C. (1992). The initial boundary-layer flow past a translating and spinning rotational symmetric body. Journal of Engineering Mathematics, 26, 415–428. Doi: 10.1007/BF00042743
  • [7] Chamkha, A.J., & Al-mudhaf, A. (2005). Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. International Journal of Thermal Sciences, 44, 267–276. doi: 10.1016/j.ijthermalsci.2004.06.005
  • [8] Anilkumar, D., & Roy, S. (2004). Unsteady mixed convection flow on a rotating cone in a rotating fluid. Applied Mathematics and Computation, 155(2), 545–561. doi: 10.1016/S0096-3003(03)00799-9
  • [9] Gorla, R.S.R., Chamkha, A.J., & Rashad, A.M. (2010). Mixed convective boundary layer flow over a vertical wedge embedded in a porous medium saturated with a nanofluid. 3rd International Conference on Thermal Issues in Emerging Technologies, Theory and Applications, Proceedings, ThETA3 2010, 6(207), 445–451. doi: 10.1109/THETA.2010.5766429
  • [10] Reddy, M.G., Rani, M.V.V.N.L.S., Kumar, K.G., & Prasannakumara, B.C. (2018). Cattaneo–Christov heat flux and non-uniform heat-source/sink impacts on radiative Oldroyd-B two-phase flow across a cone/wedge. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2). doi: 10.1007/s40430-018-1033-8
  • [11] Gnaneswara Reddy, M., Padma, P., & Sudha Rani, M.V.V.N.L. (2019). Non-linear thermal radiative analysis on hydromagnetic nanofluid transport through a rotating cone. International Journal of Applied and Computational Mathematics, 5(3). doi: 10.1007/s40819-019-0654-7
  • [12] Saleem, S. (2021). Heat and Mass Transfer of Rotational Flow of Unsteady Third-Grade Fluid over a Rotating Cone with Buoyancy Effects. Mathematical Problems in Engineering, 2021. doi:10.1155/2021/5544540
  • [13] Shah, Z., Alzahrani, E., Jawad, M., & Khan, U. (2020). Microstructure and Inertial Characteristics of MHD Suspended SWCNTs and MWCNTs Based Maxwell Nanofluid Flow with Bio-Convection and Entropy Generation Past a Permeable Vertical Cone. Coatings, 10(10), 998. doi: 10.3390/coatings10100998
  • [14] Krishna, M.V., Ahammad, N.A., & Chamkha, A.J. (2021). Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially accelerated vertical porous surface. Case Studies in Thermal Engineering, 27(7), 101229. doi: 10.1016/j.csite.2021.101229
  • [15] Chamkha, A.J., & Rashad, A.M. (2013). Unsteady Heat and Mass Transfer by MHD Mixed Convection Flow From a Rotating Vertical Cone With Chemical Reaction and Soret and Dufour Effects. The Canadian Journal of Chemical Engineering, 99, 991–10. doi:10.1002/cjce.21894
  • [16] Krishna, M.V., Swarnalathamma, B.V., & Chamkha, A.J. (2019). Investigations of Soret, Joule and Hall effects on MHD rotating mixed convective flow past an infinite vertical porous plate. Journal of Ocean Engineering and Science, 4(3), 263–275. doi:10.1016/j.joes.2019.05.002
  • [17] Yasir, M., Khan, M., & Malik, Z.U. (2023). Analysis of thermophoretic particle deposition with Soret-Dufour in a flow of fluid exhibit relaxation/retardation times effect. International Communications in Heat and Mass Transfer, 141, 106577. doi: 10.1016/j.icheatmasstransfer.2022.106577
  • [18] Gnaneswara Reddy, M. (2018). Cattaneo-Christov heat flux effect on hydromagnetic radiative Oldroyd-B liquid flow across a cone/wedge in the presence of cross-diffusion. European Physical Journal Plus, 133(24). doi: 10.1140/epjp/i2018-11844-0
  • [19] Saleem, S., Firdous, H., Nadeem, S., & Khan, A.U. (2019). Convective Heat and Mass Transfer in Magneto Walter’s B Nanofluid Flow Induced by a Rotating Cone. Arabian Journal for Science and Engineering, 44(2), 1515–1523. doi: 10.1007/s13369-018-3598-z
  • [20] Nadeem, S., Khan, M.N., & Abbas, N. (2020). Transportation of slip effects on nanomaterial micropolar fluid flow over exponentially stretching. Alexandria Engineering Journal, 59(5),3443−3450. doi: 10.1016/j.aej.2020.05.024
  • [21] Khan, S.A., Hayat, T., Khan, M.I., & Alsaedi, A. (2020). Salient features of Dufour and Soret effect in radiative MHD flow of viscous fluid by a rotating cone with entropy generation. International Journal of Hydrogen Energy, 45(28), 14552–14564. doi:10.1016/j.ijhydene.2020.03.123
  • [22] Ghoneim, N.I., Reddy, M.G., & Megahed, A.M. (2021). Numerical solution for natural convection fluid flow along a vertical cone with variable diffusivity and wall heat and mass fluxes embedded in a porous medium. International Journal of Modern Physics C, 32(06), 2150074. doi: 10.1142/S0129183121500741
  • [23] Abd El-Aziz, M. (2007). Temperature dependent viscosity and thermal conductivity effects on combined heat and mass transfer in MHD three-dimensional flow over a stretching surface with Ohmic heating. Meccanica, 42(4), 375–386. doi: 10.1007/s11012-006-9051-5
  • [24] Lai, F.C., & Kulacki, F.A. (1990). The effect of variable viscosity on convective heat transfer along a vertical surface in a saturated porous medium. International Journal of Heat and Mass Transfer, 33(5), 1028–1031. doi: 10.1016/0017-9310(90)90084-8
  • [25] Prasad, K.V., Vajravelu, K., & Datti, P.S. (2010). The effects of variable fluid properties on the hydro-magnetic flow and heat transfer over a non-linearly stretching sheet. International Journal of Thermal Sciences, 49(3), 603–610. doi: 10.1016/j.ijthermalsci.2009.08.005
  • [26] Mukhopadhyay, S. (2009). Unsteady boundary layer flow and heat transfer past a porous stretching sheet in presence of variable viscosity and thermal diffusivity. International Journal of Heat and Mass Transfer, 52(21–22), 5213–5217. doi: 10.1016/j.ijheatmasstransfer.2009.04.013
  • [27] Khan, M.N., Nadeem, S., & Muhammad, N. (2020). Micropolar fluid flow with temperature-dependent transport properties. Heat Transfer, 49(4), 2375–2389. doi: 10.1002/htj.21726
  • [28] Khan, M.N., & Nadeem, S. (2021). A comparative study between linear and exponential stretching sheet with double stratification of a rotating Maxwell nanofluid flow. Surfaces and Interfaces, 22, 100886. doi: 10.1016/j.surfin.2020.100886
  • [29] Ahmad, S., Khan, M.N., & Nadeem, S. (2022). Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction. International Journal of Ambient Energy, 43(1), 6542–6552. doi: 10.1080/01430750.2022.2029765
  • [30] Malik, M.Y., Jamil, H., Salahuddin, T., Bilal, S., Rehman, K.U., & Mustafa, Z. (2016). Mixed convection dissipative viscous fluid flow over a rotating cone by way of variable viscosity and thermal conductivity. Results in Physics, 6, 1126–1135. doi: 10.1016/j.rinp.2016.11.027
  • [31] Sambath, P., Sankar, D.S., & Vishwanathan, K.K. (2020). A numerical study of dissipative chemically reactive radiative MHD flow past a vertical cone with non-uniform mass flux. International Journal of Applied Mechanics and Engineering, 25(1), 159–176. doi: 10.2478/ijame-2020-0011
  • [32] Ragulkumar, E., Palani, G., Sambath, P., & Chamkha, A.J. (2023). Dissipative MHD free convective nanofluid flow past a vertical cone under radiative chemical reaction with mass flux. Scientific Reports, 13(1), 1–13. doi: 10.1038/s41598-023-28702-0
  • [33] Khan, S.A., Hayat, T., & Alsaedi, A. (2022). Thermal conductivity performance for ternary hybrid nanomaterial subject to entropy generation. Energy Reports, 8, 9997–10005. doi: 10.1016/j.egyr.2022.07.149
  • [34] Beg, O.A., Ghosh, S., & Bég, T. (2011). Applied Magnetofluid Dynamics: Modelling and Computation (1st ed.). LAP Lambert Academic Publishing.
  • [35] Brewster, M.Q. (1992). Thermal Radiative Transfer and Properties. John Wiley & Sons Ltd. New York.
  • [36] Schlichting, H., & Gersten, K. (2017). Boundary-Layer Theory. (9th ed.). Springer Berlin Heidelberg. doi: 10.1007/978-3-662-52919-5
  • [37] Shampine, L., Kierzenka, J., & Reichelt, M. (2000). Solving boundary value problems for ordinary differential equations in MATLAB with bvp4c. Tutorial Notes, 75, 2751–27. https://classes.engineering.wustl.edu/che512/bvp_paper.pdf [accessed 14 Nov. 2023].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b77ad78-2ddd-4fd6-9bd2-d7ddda908ae5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.