PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infrared Imaging as a Non-Destructive Testing Method for Geopolymer Concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Non-destructive testing (NDT) is generally used to estimate the compressive strength of concrete material without compromising its structural integrity. However, the available testing methods on the market have particular limitations that may restrict the accuracy of the results. Therefore, this study aimed to develop a new technique for measuring the compressive strength of geopolymer concrete using infrared imaging analysis and Thermal Diameter Variation (TDV) rate. The compressive strength range was designed within the target strength of 20, 30 and 40 MPa. The infrared image was captured on the preheated concrete surface using FLIR-ONE infrared camera. Based on the correlation between TDV rate and compressive strength, higher accuracy was obtained in the orange contour with an R2 of 0.925 than in the red contour with an R2 of 0.8867. It is apparent that infrared imaging analysis has excellent reliability to be used as an alternative NDT by focusing on the warmer region during the procedure.
Twórcy
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
  • Universiti Tun Hussein Onn Malaysia, Faculty of Engineering Technology, Johor, Malaysia
  • Universiti Malaysia Pahang, Faculty of Civil Engineering Technology, Pahang, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Centre of Excellence Geopolymer & Green Technology (CEGeoGTech), Perlis, Malaysia
Bibliografia
  • [1] N. B.Singh, B. Middendorf, Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials 237, 117455 (2020).
  • [2] G. Mathew, B. Joseph, Flexural behaviour of geopolymer concrete beams exposed to elevated temperatures. Journal of Building Engineering 15, 311-317 (2018).
  • [3] M. Tomatis, H. K. Jeswani, L. Stamford, A. Azapagic, Assessing the environmental sustainability of an emerging energy technology: Solar thermal calcination for cement production, Sci. Total Environ. 742, 140510 (2020).
  • [4] S.K. John, Y. Nadir, K. Girija, Effect of source materials, additives on the mechanical properties and durability of fly ash and fly ash-slag geopolymer mortar: A review. Construction and Building Materials 280, 122443 (2021).
  • [5] W.W.A. Zailani, M.M.A.B. Abdullah, M.F. Arshad, R.A. Razak, M.F.M. Tahir, R.R.M.A. Zainol, M. Nabialek, A.V. Sandu, J.J. Wysłocki, K. Błoch, Materials 14, 56 (2021).
  • [6] M.H. Yazid, M.A. Faris, M.M.A.B. Abdullah, M. Nabiałek, S.Z.A. Rahim, M.A.A.M. Salleh, M. Kheimi, A.V. Sandu, A. Rylski, B. Jeż, Materials 15 (4), 1496 (2022).
  • [7] K. Neupane, D. Chalmers, P. Kidd, High-strength geopolymer concrete-properties, advantages and challenges. Advances in Materials 7 (2), 15-25 (2018).
  • [8] M.A. Faris, M.M.A.B. Abdullah, R. Muniandy, M.F. Abu Hashim, K. Błoch, B. Jeż, S. Garus, P. Palutkiewicz, N.A. Mohd Mortar, M.F. Ghazali, Materials 14, 1310 (2021).
  • [9] N.H. Jamil, M.M.A.B. Abdullah, F. Che Pa, M. Hasmaliza, W.M.A. Ibrahim, I.H.A. Aziz, B. Jeż, M. Nabiałek, Magnetochemistry 7, 32 (2021).
  • [10] N. Ariffin, M.M.A.B. Abdullah, P. Postawa, S.Z.A. Rahim, M.R.R.M.A. Zainol, R.P. Jaya, A. Śliwa, M.F. Omar, J.J. Wysłocki, K. Błoch, M. Nabiałek, Materials 14, 814 (2021).
  • [11] O.H. Li, L. Yun-Ming, H. Cheng-Yong, R. Bayuaji, M.M.A.B. Abdullah, F.K. Loong, T.A. Jin, N.H. Teng, M. Nabiałek, B. Jeż, N.Y. Sing, Magnetochemistry 7 (1), 9 (2021).
  • [12] S. K. Das, S. M. Mustakim, A. Adesina, J. Mishra, T. S. Alomayri, H. S. Assaedi, C. R. Kaze, Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. Journal of Building Engineering 32, 101780 (2020).
  • [13] H. E. Elyamany, M. Abd Elmoaty, A. M. Elshaboury, Setting time and 7-day strength of geopolymer mortar with various binders. Construction and Building Materials 187, 974-983 (2018).
  • [14] V.P.R. Bharti, Shobharam, M. Gautam, Review: an Overview of Geopolymer Concrete, Int. J. Tech. Res. Sci. 5, 10, 13-19 (2020).
  • [15] R.D. Adams, Non-destructive testing. Handbook of Adhesion Technology: Second Edition 2, 2, 1-62 (2018). DOI: https://doi.org/10.1007/978-3-319-55411-2_42
  • [16] D.A. Oke, G.F. Oladiran, S.B. Raheem, Correlation between Destructive Compressive Testing (DT) and Non-Destructive Testing (NDT) for Concrete Strength. International Journal of Engineering Research and Science 3 (5), 27-30 (2017). DOI: https://doi.org/10.25125/engineering-journal-ijoer-may2017-12
  • [17] U. Lencis, A. Udris, A. Korjakins, Moisture Effect on the Ultrasonic Pulse Velocity in Concrete Cured under Normal Conditions and at Elevated Temperature, Construction Science 14 (2013). DOI: https://doi.org/10.2478/cons-2013-0011
  • [18] M.I. Abdul Aleem, P.D. Arumairaj, A Review of Seismic Assessment of Reinforced Concrete Structure using Pushover Analysis, Int. J. Eng. Sci. Emerg. Technol. 1, 2, 118-122 (2011).
  • [19] Z. Qu, P. Jiang, W. Zhang, Development and application of infrared thermography non-destructive testing techniques, Sensors (Switzerland) 20, 141-27 (2020).
  • [20] A. Kusbiantoro, M.F. Nuruddin, N. Shafiq, S.A. Qazi, The effect of microwave incinerated rice husk ash on the compressive and bond strength of fly ash based geopolymer concrete, Construction and Building Materials 36, 695-703 (2012).
Uwagi
This research was supported by the Ministry of Higher Education (MOHE) through Fundamental Research Grant Scheme (FRGS) (FRGS/1/2022/TK01/UTHM/02/4) and Universiti Tun Hussein Onn Malaysia (UTHM) through Research Enhancement-Graduate Grant (REGG) (vot H890).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b76adf0-cf13-4891-9b2b-dab1df67a2f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.