PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigations of titanium implants covered with hydroxyapatite layer

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To reduce unfavorable phenomena occurring after introducing an implant into human body various modifications of the surface are suggested. Such modifications may have significant impact on biocompatibility of metallic materials. The titanium and it's alloys are commonly used for joint and dental implants due to their high endurance, low plasticity modulus, good corrosion resistance as well as biocompatibility. Special attention should be given to titanium alloys containing zirconium, tantalum and niobium elements. These new generation alloys are used by worldwide engineering specialists. The experiments were performed with hydroxyapatite layer on titanium specimens with the use of electrophoresis method (different voltage and time).
Rocznik
Strony
78--86
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. Błażewicz S., Stoch L., Biomaterials, vol. 4, Academic Publisher Office Exit, Warszawa 2003.
  • 2. Surowska B., Weroński A.: Structure and properties of biomaterials, Publishing Office of Technical University of Lublin, Lublin 1990.
  • 3. Szewczenko J., Marciniak J., Kajzer W., Kajzer A., Evaluation of corrosive resistance of titanium alloys used for medical implants, Archives of Metallurgy and Materials, 61 (2) (2016), 695-700.
  • 4. Bronzino, B. Raton B., The biomedical engineering handbook, second edition, CRC Press LLC (2000).
  • 5. Karasiński P., Gondek E., Drewniak S., Kajzer A., Waczynska-Niemiec A., Basiaga M., Izydorczyk W., Porous titania films fabricated via sol gel rout – optical and AFM characterization, Optical Materials, 56 (2016), 64-70.
  • 6. Tahmasbim – Rad A., Solati – Hashjin M., Azuan N., Osman A., Faghihi S.: Improved biophysical performance of hydroxyapatite coatings obtained by electrophoretic deposition at dynamic voltage, Ceramics International, 40 (8) (2014), 12681-12691.
  • 7. Hamagami J., Ato Y., Kanamura K., Fabrication of highly ordered macroporous apatite coating onto titanium by electrophoretic deposition method. Solid State Ionics, 172 (1) (2004), 331-334.
  • 8. Ma J., Liang C.H., Kong L.B., Wang C., Colloidal characterization and electrophoretic deposition of hydroxyapatite on titanium substrate. Journal of Materials Science: Materials in Medicine, 14 (2003), 797-801.
  • 9. Ma J., Wang C., Peng K.W., Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials, 24 (2003), 3505-3510.
  • 10. Yousefpour M., Afshar A., Chen J., Zhank X., Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates, Materials Science and Engineering, C27 (2007), 1482-1486.
  • 11. Pang X., Zhitomirsky I., Electrophoretic deposition of composite hydroxyapatite – chitosan coatings. Materials Characterization, 58 (2007), 339-348.
  • 12. Wei M., Ruys A., Milthorpe B., Sorrell C., Precipitation of hydroxyapatite nanoparticles: Effects of precipitation method on electrophoretic deposition, Journal of Materials Science, Materials in Medicine, 16 (2005), 319-324.
  • 13. Wei M., Ruys A., Milthorpe B., Sorrell C., Evans J., Electrophoretic deposition of hydroxyapatite coatings on metal substrates: A nanoparticulate dual-coating approach. Journal of Sol-Gel Science and Technology, 21 (2001), 39-48.
  • 14. Xiao X., Liu R., Effect of suspension stability on electrophoretic deposition of hydroxyapatite coating, Materials Letters, 60 (2006), 2627-2632.
  • 15. Stojanovic D., Jokic B., Veljovic D., Petrovic R., Uskokovic P., Janackovic D., Bioactive Glass – apatie composite coating for titanium implant synthesized by electrophoretic deposition, Journal of European Ceramic Society, 27 (2007), 1595-1599.
  • 16. Stoch A., Brożek A., Kmita G., Stoch J., Jastrzębski W., Rakowska A., Electrophoretic coating of hydroxyapatite on titanium implants, Journal of Molecular Structure, 596 (2001), 191-200.
  • 17. Zhenyu Z., Jinli Q., Electrophoretic deposition of biomimetic zinc substituted hydroxyapatite coatings with chitosan and carbon nanotubes on titanium, Ceramics International 41 (2015), 8878-8884.
  • 18. Świeczko-Żurek B., Biomaterials, Technical University of Gdansk, Gdansk 2009.
  • 19. Semenowicz J., Mroczka A., Kajzer A., Kajzer W., Koczy B., Marciniak J., Total hip arthroplasty using cementlees avantage cup in patients with risk of hip prosthesis instability, Ortopedia Traumatologia Rehabilitacja, 16 (3) (2004), 253-263.
  • 20. Basiaga M., Walke W., Paszenda Z., Kajzer A., The effect of EO and steam sterilization on the mechanical and electrochemical properties of titanium Grade 4, Materials and Technology, 50 (1) 2016, 153–158.
  • 21. Besra L., Lin M., A review on fundamentals and applications of electrophoretic deposition (EPD), Progress in Materials Science, 52 (2007), 1-61.
  • 22. Boccaccini A., Keim S., Ma R., Li Y., Zhitomirsky I., Electrophoretic deposition of biomaterials. Journal of The Royal Society Interface, 7 (Suppl 5) (2010) 581-613.
  • 23. Boccaccini A., Zhitomirsky I., Application of electrophoretic and electrolytic deposition techniques in ceramic processing, Current Opinion in Solid State and Materials Science, 6 (2002), 251-260.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b75d933-d6c5-4a1c-9d1d-1246d18a4314
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.