PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

In situ-formed bacterial exopolysaccharide (EPS) as a potential carrier for anchorage-dependent cell cultures

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study involved the use of a bacterial strain isolated from environmental samples which produce the biopolymer in the form of pellets in the submerged culture. This material (bacterial exopolysaccharide) is produced by bacteria of the Komogateibacter xylinus which are prevalent in the environment. The aim of this study was to characterize bacterial exopolysaccharides and commercial dextran-based “microcarriers” in terms of their roughness and cell culture effects, including the morphology and viability of the human hybridoma vascular endothelial cell line EA.hy926. The pellets were characterized using scanning electron microscopy (SEM) and atomic for¬ce microscopy (AFM). The resulting structures were used for cell culture of adherent cells (anchorage¬-dependent cells). At the same time, the cultures with commercial, dextran-based “microcarriers” were carried out for comparative purposes. After com¬pletion of the cell culture (24 hours of culture), the cellulose and commercial “carriers” were analyzed using SEM and AFM. Finally, the obtained cell dens¬ities (fluorescence labelling) and their morphological characteristics (SEM) were compared. The obtained results strongly support the applicability of bacterial exopolysaccharide (EPS) in tissue engineering to build innovative 3D scaffolds for cell culture, the more so that it is technologically possible to produce EPS as spatially complex structure
Rocznik
Strony
18--23
Opis fizyczny
Bibliogr. 29 poz., wykr., tab., zdj.
Twórcy
  • Bionanopark Ltd, Dubois 114/116, 93-465 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
  • Bionanopark Ltd, Dubois 114/116, 93-465 Lodz, Poland
  • Bionanopark Ltd, Dubois 114/116, 93-465 Lodz, Poland
  • Bionanopark Ltd, Dubois 114/116, 93-465 Lodz, Poland
  • Bionanopark Ltd, Dubois 114/116, 93-465 Lodz, Poland
  • Department of Biophysics, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
Bibliografia
  • [1] A.J. Brown: On an acetic ferment which forms cellulose. J. Chem. Soc., Trans. 49 (1886) 432-439.
  • [2] M. Shoda, Y. Sugano: Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10 (2005) 1-8.
  • [3] A.S. Kumar, K. Mody: Bacterial exopolysaccharides-a perception. Journal of Basic Microbiology 47 (2007) 103-117.
  • [4] Dudman W.F. In: Sutherland I (Ed) Surface carbohydrates of the prokaryotic cell. Academic press New York (1977) 357-414.
  • [5] S.R. Dave, A.M. Vaishnav, K.H. Upadhyay, D.R. Tipre: Microbial exopolysaccharide - an inevitable product for living beings and environment. J Bacteriol Mycol Open Access 2(4) (2016) 109-111.
  • [6] S. Keshk: Bacterial Cellulose Production and its Industrial Applications. J Bioproces Biotechniq 4 (2014) 1-10.
  • [7] H. Yildiza, N. Karatas: Microbial exopolysaccharides: Resources and bioactive properties 72 (2018) 41-46.
  • [8] V. Crescenzi: Microbial polysaccharides of applied interest: ongoing research activities in Europe. Biotechnol. Progr. 11 (1995) 251-259.
  • [9] A.K. Patel, P. Michaud, R.R. Singhania, R.C. Soccol, A. Pandey: Polysaccharides from probiotics: new developments as food additi¬ves. Food Technol. Biotechnol. 48 (4) (2010) 451-463.
  • [10] H. Maeda, X. Zhu, K. Omura, S. Suzuki, S. Kitamura: Effects of an exopolysaccharide kefiran on lipids, blood pressure, blood glucose, and constipation. Biofactors 22 (2004) 197-200.
  • [11] U.U. Nwodo, E. Green, A.I. Okoh: Bacterial exopolysaccha-rides: functionality and prospects. Int. J. Mol. Sci. 13 (2012) 14002-14015.
  • [12] G.F. Picheth, C.L. Pirich, M.R. Sierakowski, M.A. Woehl, C.N. Sakakibara, C.F. Souza, A.A. Martin, R. Silva, R.A. Freitas: Bacterial cellulose in biomedical applications: A review. Int. J. Biol. Macromol.104 (2017) 97-106.
  • [13] C.E. Escárcega-González, J.A. Garza-Cervantes, A. Vázquez-Rodríguez, J.R. Morones-Ramírez: Bacterial Exopolysaccharides as Reducing and/or Stabilizing Agents during Synthesis of Metal Nanoparticles with Biomedical Applications. International Journal of Polymer Science (2018) 1-15.
  • [14] M.M. Nadzir, R.W. Nurhayati, F.N. Idris, M.H. Nguyen: Biomedical Applications of Bacterial Exopolysaccharides: A Review. Polymers 13 (2021) 1-23.
  • [15] G. Helenius, H. Backdahl, A. Bodin, U. Nannmark, P. Gatenholm, B. Risberg: In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A 76A(2) (2006) 431-438.
  • [16] N. Lin, A. Dufresne: Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J. 59 (2014) 302-325.
  • [17] M. Shoda and Y. Sugano: Recent advances in bacterial cellulose production. Biotechnology and Bioprocess Engineering 10 (2005) 1-8.
  • [18] M. Zaborowska, A. Bodin, H. Bäckdahl, J. Popp, J. Goldstein, P. Gatenholm: Microporous bacterial cellulose as a potential scaffold for boneregeneration. Acta Biomater. 6 (2010) 2540-2547.
  • [19] H. Ardalani, S. Sengupta, V. Harms, V. Vickerman, J.A. Thomson, W.L. Murphy: 3-D culture and endothelial cells im¬prove maturity of human pluripotent stem cell-derived hepatocytes. Acta Biomaterialia 95 (2019) 371-381.
  • [20] B. Andrée, H. Ichanti, S. Kalies, A. Heisterkamp, S. Strauß, P.M. Vogt, A. Haverich, A. Hilfiker: Formation of three-dimensional tubular endothelial cell networks under defined serum-free cell culture conditions in human collagen hydrogels. Scientific Reports 9 (2019).
  • [21] R. Sfriso, R. Rieben: 3D Cell-Culture Models for the Assessment of Anticoagulant and Anti-Inflammatory Properties of Endothelial Cells. Methods in Molecular Biology 2110 (2020) 83-97.
  • [22] V. Duinen, S.J. Trietsch, J. Joore, P. Vulto, T. Hankemeier, Microfluidic 3D cell culture: from tools to tissue models. Current Opinion in Biotechnology 35 (2015) 118-126.
  • [23] M. Félétou: The Endothelium: Part 1: Multiple Functions of the Endothelial Cells — Focus on Endothelium-Derived Vasoactive Mediators. Morgan & Claypool, San Rafael (2011)
  • [24] M. Pate, V. Damarla, D.S. Chi, S. Negi, G. Krishnaswamy: Endothelial cell biology: role in the inflammatory response. Adv Clin Chem. 52 (2010) 109-130.
  • [25] A.M. Kolodziejczyk, M. Kucinska, A. Jakubowska, M. Siat¬kowska, P. Sokołowska, S. Kotarba, K. Makowski, P. Komorowski, B. Walkowiak: Microscopic analysis of the nanostructures impact on endothelial cells. Engineering of Biomaterials 154 (2020) 2-8.
  • [26] Z.W. Chung, D.Z. Liu, S.Y. Wang, S.S. Wang: Enhancement of the growth of human endothelial cells by surface roughness at nanometer scale. Biomaterials. 24 (2003) 4655-4661.
  • [27] F. Gentile, L. Tirinato, E. Battista, F. Causa, C. Liberale, E.M. Fabrizio, P. Decuzzi: Cells preferentially grow on rough sub¬strates. Biomaterials 31 (2010) 7205-7212.
  • [28] A. Zareidoost, M. Yousefpour, B. Ghaseme, A. Amanzadeh: The relationship of surface roughness and cell response of che¬mical surface modification of titanium. J Mater Sci: Mater Med 23 (2012) 1479-1488.
  • [29] M. Jayaraman, U. Meyer, M. Buhner, U. Joos, H.P. Wiesmann: Influence of titanium surfaces on attachment of osteoblast-like cells in vitro. Biomaterials. 25 (2004) 625-631.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b74f2b2-4137-4a1a-932c-52d7a592e53b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.