Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper we consider the problem of automatic localization of multiple sclerosis (MS) lesions within brain tissue. We use a machine learning approach based on a convolutional neural network (CNN) which is trained to recognize the lesions in magnetic resonance images (MRI scans) of the patient’s brain. The training images are relatively small fragments clipped from the MRI scans so – in order to provide additional hints on location of a given clip within the brain structures – we include anatomical information in the training/testing process. Our research has shown that indicating the location of the ventricles and other structures, as well as performing brain tissue classification may enhance the results of the automatic localization of the MS-related demyelinating plaques in the MRI scans.
Rocznik
Tom
Strony
857--868
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
- Institute of Information Technology, Lodz University of Technology, Wolczanska 215, 90-924 Lodz, Poland
autor
- Institute of Information Technology, Lodz University of Technology, Wolczanska 215, 90-924 Lodz, Poland
autor
- Department of Radiology, Barlicki University Hospital, Kopcinskiego 22, 91-153 Lodz, Poland
autor
- Institute of Information Technology, Lodz University of Technology, Wolczanska 215, 90-924 Lodz, Poland
Bibliografia
- [1] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position,” Biological Cybernetics 36, 193–202, 1980.
- [2] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale hierarchical image database,” in CVPR09, 2009.
- [3] A. de Brebisson and G. Montana, “Deep neural networks for anatomical brain segmentation,” ArXiv e-prints 1502.02445, Feb. 2015.
- [4] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully convolutional neural networks for volumetric medical image segmentation,” ArXiv e-prints 1606.04797, June 2016.
- [5] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” ArXiv e-prints, 1505.04597, May 2015.
- [6] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for semantic segmentation,” ArXiv e-prints, vol. 1605.06211, May 2016.
- [7] B. Stasiak, P. Tarasiuk, I. Michalska, A. Tomczyk, and P.S. Szczepaniak, “Localization of demyelinating plaques in MRI using convolutional neural networks,” in Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017) 55‒64, 2017.
- [8] R. Milo and E. Kahana, “Multiple sclerosis: Geoepidemiology, genetics and the environment,” Autoimmunity Reviews 9 (5) A387–A394, 2010.
- [9] K. Berer and G. Krishnamoorthy, “Microbial view of central nervous system autoimmunity,” FEBS Letters 588 (22), 4207‒4213, 2014.
- [10] P.M. Parizel, L. van den Hauwe, F. De Belder, J. Van Goethem, C. Venstermans, R. Salgado, M. Voormolen, and W. Van Hecke, Magnetic Resonance Imaging of the Brain, 107‒195. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.
- [11] X. Tao and M.-C. Chang, “A skull stripping method using deformable surface and tissue classification,” 2010.
- [12] I. Kapouleas, “Automatic detection of white matter lesions in magnetic resonance brain images,” Computer Methods and Programs in Biomedicine 32 (1), 1‒35, 1990.
- [13] M. Cabezas, A. Oliver, E. Roura, J. Freixenet, J.C. Vilanova, L. Ramió-Torrentà, Àlex Rovira, and X. Lladó, “Automatic multiple sclerosis lesion detection in brain MRI by flair thresholding,” Computer Methods and Programs in Biomedicine, 115 (3 147‒161, 2014.
- [14] N. Weiss, D. Rueckert, and A. Rao, “Multiple sclerosis lesion segmentation using dictionary learning and sparse coding,” in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 (K. Mori, I. Sakuma, Y. Sato, C. Barillot, and N. Navab, eds.), 735‒742, Springer Berlin Heidelberg, 2013.
- [15] O. Ghribi, L. Sellami, M.B. Slima, C. Mhiri, M. Dammak, and A.B. Hamida, “Multiple sclerosis exploration based on automatic MRI modalities segmentation approach with advanced volumetric evaluations for essential feature extraction,” Biomedical Signal Processing and Control 40, 473‒487, 2018.
- [16] FMRIB, “FMRIB centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Brain extraction tool (BET),” 2012.
- [17] G. Gerig, O. Kubler, R. Kikinis, and F. Jolesz, “Nonlinear anisotropic filtering of MRI data,” 11 (2), 221‒232, 1992.
- [18] A. Birenbaum and H. Greenspan, “Longitudinal multiple sclerosis lesion segmentation using multi-view convolutional neural networks,” in Deep Learning and Data Labeling for Medical Applications (G. Carneiro, D. Mateus, L. Peter, A. Bradley, J.M.R.S. Tavares, V. Belagiannis, J.P. Papa, J.C. Nascimento, M. Loog, Z. Lu, J.S. Cardoso, and J. Cornebise, eds.), (Cham), pp. 58‒67, Springer International Publishing, 2016.
- [19] W.S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,” The Bulletin of Mathematical Biophysics, 5 (4), 115‒133, 1943.
- [20] D.C. Cireşan, U. Meier, J. Masci, L.M. Gambardella, and J. Schmidhuber, “Flexible, high performance convolutional neural networks for image classification,” in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence – Volume Volume Two, IJCAI’11 1237‒1242, 2011.
- [21] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems 25 (F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, eds.), pp. 1097‒1105, Curran Associates, Inc., 2012.
- [22] D.H. Hubel and T.N. Wiesel, “Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat,” Journal of Neurophysiology 28, 229‒289, 1965.
- [23] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” in Proceedings of the IEEE 2278‒2324, 1998.
- [24] Y. LeCun and Y. Bengio, “Convolutional networks for images, speech, and time-series,” in The Handbook of Brain Theory and Neural Networks (M. A. Arbib, ed.), MIT Press, 1995.
- [25] M.D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” CoRR abs/1311.2901, 2013.
- [26] T.V. Nguyen, C. Lu, J. Sepulveda, and S. Yan, “Adaptive non-parametric image parsing,” CoRR abs/1505.01560, 2015.
- [27] K.R. Mopuri and R.V. Babu, “Object level deep feature pooling for compact image representation,” CoRR abs/1504.06591, 2015.
- [28] M. Matsugu, K. Mori, Y. Mitari, and Y. Kaneda, “Subject independent facial expression recognition with robust face detection using a convolutional neural network.,” Neural Networks, 16 (5‒6), 555‒559, 2003.
- [29] J. Dai, K. He, and J. Sun, “Convolutional feature masking for joint object and stuff segmentation,” CoRR abs/1412.1283, 2014.
- [30] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images,” IEEE Transactions on Geoscience and Remote Sensing 54 (12), 7405‒7415, 2016.
- [31] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on imagenet classification,” CoRR abs/1502.01852, 2015.
- [32] R. Kikinis, S. D. Pieper, and K. G. Vosburgh, 3D Slicer: A Platform for Subject-Specific Image Analysis, Visualization, and Clinical Support 277‒289. New York, NY: Springer New York, 2014.
- [33] A. Fedorov, R. Beichel, J. Kalpathy-Cramer, J. Finet, J.-C. Fillion-Robin, S. Pujol, C. Bauer, D. Jennings, F. Fennessy, M. Sonka, J. Buatti, S. Aylward, J. Miller, S. Pieper, and R. Kikinis, “3D slicer as an image computing platform for the quantitative imaging network,” Magnetic Resonance Imaging 30 (9), 1323‒41, 2012.
- [34] M.-C. Chang and X. Tao, “Subvoxel segmentation and representation of brain cortex using fuzzy clustering and gradient vector diffusion,” 2010.
- [35] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.
- [36] R. Mechrez, J. Goldberger, and H. Greenspan, “Patch-based segmentation with spatial consistency: Application to MS lesions in brain MRI,” Journal of Biomedical Imaging 2016, 3:3–3:3, Jan. 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b74b879-7e95-40cd-bcca-4b2e83422de0