Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The leakage of hazardous compounds in chemical industries has always been one of the factors threatening workers, plants, and the environment. Among them, butyl acrylate is one of the most harmful materials that are widely used in chemical plants. In the present study, a butyl acrylate tank located in a real tank farm in Kocaeli-Turkey was analyzed for the examination of emissions and trinitrotoluene (TNT) equivalent explosion model of the vapor cloud. Areal Locations of Hazardous Atmospheres (ALOHA) program was used to define threat zones of butyl acrylate leakage based on different scenarios, such as a leakage from the tank without fire, burning as a jet fire, and also burning as a fireball during Boiling Liquid Expanding Vapor Explosion (BLEVE). In addition, since the most important parameters that enhance the effects of explosion and the spread of volatile organic compounds (VOCs) are wind speed, filling ratio of the tanks, and temperature, the interaction of these parameters on the threat zones and the highest threat zones of explosions were investigated using the Box-Behnken experimental design and one-way Analysis of Variance (ANOVA), respectively. As butyl acrylate, one of the most dangerous chemicals for industrial facilities, and its explosion effects have not been studied so far, it can be safely mentioned that this paper representing the first study in the literature is highly original and novel.
Czasopismo
Rocznik
Tom
Strony
346--358
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Istanbul Technical University, Disaster Management Institute, Disaster and Emergency Management Department, 34730, Istanbul, Turkey
autor
- Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34730, Istanbul, Turkey
autor
- Department of Statistics, Ferdowsi University of Mashhad, Iran
autor
- Department of Environmental Science, Kheradgarayn Motahar Institute of Higher Education, Mashhad, Iran
Bibliografia
- 1. Abbaslou, H., Karimi, A., 2019. Modeling of ammonia emission in the petrochemical industry. Jundishapur Journal of Health Sciences, 11(3), e94101, DOI: 10.1186/1752-153X-6-100.377045522967885
- 2. Abdollahi, Y., Zakaria, A., Matori, K. A., Shameli, K., Jahangirian, H., Rezayi, M., Abdollahi, T., 2012. Interactions between photodegradation components. Chemistry Central Journal, 6(1), 1-5, DOI: 10.1186/1752-153X-6-100.
- 3. Aliemeke, B.N., Oladeinde M.H., 2020. Box-Behnken design optimization of sand casting proces parameters. International Journal of Engineering Technologies-IJET, 6(2), 25-36, DOI: 10.19072/ijet.714473.
- 4. Beheshti, M.H., Dehghan, S.F., Hajizadeh, R., Jafari, S.M., Koohpaei, A., 2018. Modelling the consequences of explosion, fire and gas leakage in domestic cylinders containing LPG. Annals of Medical and Health Sciences Research, 8, 83-88.
- 5. Bertinetto, C., Engel, J., Jansen, J., 2020. ANOVA simultaneous component analysis: A tutorial review. Analytica Chimica Acta: X, 6, 100061, DOI: 10.1016/j.acax.2020.100061.777268433392497
- 6. Ding, Y., Zhang, X., Shi, Y., Zhang, H., 2022. Prediction of far-field blast loads from large TNT-equivalent explosives on gabled frames, Journal of Constructional Steel Research, 190, 107120, DOI: https://doi.org/10.3390/app12052691.10.3390/app12052691
- 7. Dertli H., Saloglu D., 2021. Vinyl acetate emission rates and explosions in tank farms in Dilovasi and Yumurtalik, Turkey: A case study. International Journal of Safety and Security Engineering 11(6), 691-696, DOI: http://doi.org/10.18280/ijsse.110609.10.18280/ijsse.110609
- 8. Hoscan, O., Cetinyokus, S., 2021. Determination of emergency assembly point for industrial accidents with AHP analysis. Journal of Loss Prevention in the Process Industries, 69, 104386, DOI: 10.1016/j.jlp.2020.104386.
- 9. Iskender, H., 2021. Risk assessment for an acetone storage tank in a chemical plant in Istanbul, Turkey: Simulation of dangerous scenarios. Process Safety Progress, 40(4), 234-239, DOI: 10.1002/prs.12252.
- 10. Jawad, A.H., Malek, N.N.A., Abdulhameed, A.S., Razuan, R., 2020. Synthesis of magnetic chitosan-fly ash/Fe3O4 composite for adsorption of reactive orange 16 dye: optimization by Box–Behnken design. Journal of Polymers and the Environment, 28(3), 1068-1082, DOI: 10.1007/s10924-020-01669-z
- 11. Kim, B., Choi, Y., Choi, J., Shin, Y., Lee, S., 2020. Effect of surfactant on wetting due to fouling in membrane distillation membrane: Application of response surface methodology (RSM) and artificial neural networks (ANN). Korean Journal of Chemical Engineering, 37(1), 1-10, DOI: 10.1007/s11814-019-0420-x.
- 12. Kim, E., Cho, Y.S., Lee, C.S., Yang, W., Hwang, S.R., Park, J., 2021. Estimation of temporal acute exposure guideline levels for emergency response-a brief case using formaldehyde. Journal of Environmental Health Sciences, 47(2), 166-174, DOI: 10.5668/JEHS.2021.47.2.166.
- 13. Kocak, T.K., 2022. A modeling framework to quantify routine VOC emissions and concentrations from organic liquid tanks. International Journal of Environment and Geoinformatics (IJEGEO), 9(1), 011-017, DOI: 10.30897/ijegeo.943706.
- 14. Lowesmith, B.J., Hankinson, G., 2012. Large-scale high-pressure jet fires involving natural gas and natural gas/hydrogen mixtures, Process Safety and Environmental Protection, 90(2), 108-120, DOI: 10.1016/j.psep.2011.08.009.
- 15. Ozcan, N., Saygi-Yalcin, B., Simsek, E. B., Saloglu, D., 2022. Removal of naproxen from wastewater using chitosan-aerogel-activated carbon bio-composites: Theory, equilibrium, kinetics, thermodynamics, and process optimization. Water Environment Research, e10699, DOI: 10.1002/wer.10699.35259288
- 16. Ranjan, H., Bharti, A.K., Emani, M.S., Meyer, J.P., Saha, S.K., 2019. New combined heat transfer enhancement techniques used in laminar flow through non-circular ducts. Applied Thermal Engineering, 163, 114325, DOI: 10.1016/j.applthermaleng.2019.114325.
- 17. Terzioglu, L., Iskender, H., 2021. Modeling the consequences of gas leakage and explosion fire in liquefied petroleum gas storage tank in Istanbul technical university. Maslak campus, Process Safety Progress, 40(4), 319-326, DOI: 10.1002/prs.12263.
- 18. US-EPA, https://www.epa.gov/air-emissions-factors-and-quantification/tanks-emissions-estimation-software-version-409d (Access Date: 27 July 2022).
- 19. Xie, G., Chen, H., Zhang, F., Shang, X., Zhan, B., Zeng, L., Chen, J., 2021. Compositions, sources, and potential health risks of volatile organic compounds in the heavily polluted rural North China Plain during the heating season. Science of the Total Environment, 789, 147956, DOI: 10.1016/j.scitotenv.2021.147956.34052493
- 20. Zhang, Q., Zhou, G., Hu, Y., Wang, S., Sun, B., Yin, W., Guo, F., 2019. Risk evaluation and analysis of a gas tank explosion based on a vapor cloud explosion model: A case study. Engineering Failure Analysis, 101, 22-35, DOI: 10.1016/j.engfailanal.2019.03.003.
- 21. Zhang, S., Wang, X., Cheng, Y. F., Shuai, J., 2019. Modeling and analysis of a catastrophic oil spill and vapor cloud explosion in a confined space upon oil pipeline leaking. Petroleum Science, 17(2), 556-566, DOI: 10.1007/s12182-019-00403
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b747f47-7c1d-47e2-a964-ca59aafd0ba4