PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical modeling of the solidification process with consideration of shrinkage cavities formation and the influence of solid phase content on the feeding of the casting

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on the numerical modeling of the three-dimensional solidification process of steel using the finite element method (FEM). The model includes and discusses the formation of shrinkage cavities and the influence of the solid phase content on the feeding of the casting through the riser. The analysis assumed a critical value of the solid phase content, at which the transport of liquid phase from the riser to the casting is interrupted. The results of numerical simulation are presented to investigate the influence of this factor on the final quality of the casting. The model neglects the fluid motion in the liquid and solid-liquid regions and replaces the influence of the mold with appropriate boundary conditions.
Rocznik
Strony
75--86
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
  • Department of Mechanics and Fundamentals of Machine Design, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] Pequet, Ch., Rappaz, M., & Gremaud, M. (2002). Modeling of microporosity, macroporosity, and pipe-shrinkage formation during the solidification of alloys using a mushy-zone refinement method: Applications to aluminum alloys. Metallurgical and Materials Transactions A, 33(7), 2095-2106.
  • [2] Bellet, M., Jaouen, O., & Poitrault, I. (2005). An ALE-FEM approach to the thermomechanics of solidification processes with application to the prediction of pipe shrinkage. International Journal of Numerical Methods for Heat and Fluid Flow, 15(2), 120-142. DOI: 10.1108/09615 530510578410.
  • [3] Hajkowski, J., Roquet, P., Khamashta, M., Codina, E., & Ignaszak, Z. (2017). Validation tests of prediction modules of shrinkage defects in cast iron sample. Archives of Foundry Engineering, 17(1), 57-66. DOI: 10.1515/afe-2017-0011.
  • [4] Campbell, J. (2003). Castings, (2nd ed.). Oxford: Butterworth-Heinemann.
  • [5] Flemings, M.C. (1974). The Solidification Processing. New York: Mc Graw-Hill.
  • [6] Kim, C.J., & Ro, S.T. (1993). Shrinkage formation during the solidification process in an open rectangular cavity. Journal of Heat Transfer, 115(4), 1078-1081. DOI: 10.1115/1.2911369.
  • [7] Jabur, A.S., & Kushnaw, F.M. (2017). Casting simulation and prediction of shrinkage cavities. Journal of Applied & Computational Mathematics, 6(4), 7. DOI: 10.4172/2168-9679.1000371.
  • [8] Ludwig, A., Wu, M., & Kharicha, A. (2016). On the importance of modeling 3D shrinkage cavities for the prediction of macrosegregation in steel ingots. in: CFD Modeling and Simulation in Materials Processing 2016, 3-10. DOI: 10.1007/978-3-319-65133-0_1.
  • [9] Zhang, C., Bao, Y., Wang, M., & Zhang L. (2016). Shrinkage porosity criterion and its application to a 5.5 ton steel ingot. Archives of Foundry Engineering, 16(2), 27-32. DOI: 10.1515/afe-2016-0021.
  • [10] Wu, M., Ludwig, A., & Kharicha, A. (2017). A four phase model for the macrosegregation and shrinkage cavity during solidification of steel ingot. Applied Mathematical Modelling, 41, 102-120. DOI: 10.1016/j.apm.2016.08.023.
  • [11] Xie, M., & Shen, H. (2020). Multiphase model for the prediction of shrinkage cavity, inclusion and macrosegregation in a 36-ton steel ingot. Frontiers in Materials, 7, 13. DOI: 10.3389/fmats.2020.577290.
  • [12] Zheng, K., Lin, Y., Chen, W., & Liu, L. (2020). Numerical simulation and optimization of casting process of copper alloy water-meter shell. Advances in Mechanical Engineering, 12(5), 1-12. DOI: 10.1177/1687814020923450.
  • [13] Mochnacki, B., & Suchy. J.S. (1993). Modeling and Simulation of Solidification of Castings. Warsaw: PWN.
  • [14] Skrzypczak, T., Węgrzyn-Skrzypczak, E., & Sowa, L. (2018). Numerical modeling of solidification process taking into account the effect of air gap. Applied Mathematics and Computation, 321, 768-779. DOI: 10.1016/j.amc.2017.11.023.
  • [15] Liu, X.L. (2000). Isothermal flow simulation of liquid composite molding. Composites: Part A, 31, 1295-1302.
  • [16] Skrzypczak, T., Sowa, L., & Węgrzyn-Skrzypczak, E. (2020). Numerical model of solidification including formation of multiple shrinkage cavities. Archives of Foundry Engineering, 20(1), 37-42. DOI: 10.24425/afe.2020.131280
  • [17] Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b746454-9875-4111-83e6-97be52443235
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.