PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

D-gun Sprayed Fe-Al Single Particle Solidification

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Krystalizacja pojedynczej cząstki Fe-Al naniesionej metodą detonacyjną
Języki publikacji
EN
Abstrakty
EN
Some Fe-Al particles less than 50 μm in diameter were deposited onto the steel substrate by means of the D-gun spraying. A solidification mechanism of an individual particle is described. The particle subjected to the description contained nominally 63 at.% Al. The description was preceded by the TEM / SAED analysis of both the Fe-Al coating and Ni-20Cr interlayer. The whole number of the analyzed particles was partially melted during the deposition. The solidification products like: amorphous phase sub-layer, oscillatory sub-layer which contains two types lamellae distributed alternately and typically non-equilibrium phase sub-layer were revealed. In the micro scale, solidification was considered as a process which occurred in two directions: towards the substrate and towards the non-melted particle part. Both solidification processes underwent the positive thermal gradients. The boron addition was localized within the eutectic precipitates pushed and then rejected by the solid/liquid interface of the solidifying non-equilibrium phase. The proposed model is a general one and therefore can be applied to other systems ;description.
PL
Cząstki proszku Fe-Al niniejsze niż 50 μm w średnicy zostały osadzone detonacyjnie na podłożu stalowym. Opisuje się mechanizm krystalizacji pojedynczej cząstki. Cząstki poddane opisowi zawierały nominalnie 63 aL% Al. Opis poprzedzono badaniami struktury metodą TEM / SAED dotyczącymi zarówno powłoki Fe-Al jak i między warstwy Ni-20Cr. Wszystkie analizowane cząstki były częściowo nadtopione podczas osadzania. Zidentyfikowano produkty krystalizacji takie jak: podwarstwę amorficzną, podwarstwę oscylacyjną zawierającą periodycznie ułożone pły tki dwu faz oraz podwarstwę zawierającą fazę typowo nierównowagową. W mikroskali proces wzrostu faz jest analizowany jako zachodzący w dwu kierunkach: w stronę podłoża i w stronę niestopionej części cząstki. Obydwa procesy wzrostu zachodziły w obecności dodatniego gradientu temperatury. Bor dodany do powłoki został zlokalizowany w eutektyce odepchniętej przez front krystalizacji fazy typowo nierównowagowej. Proponowany model ma charakter ogólny i może być zastosowany do opisu innych systemów.
Twórcy
  • Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30 059 Kraków, Poland
  • Military University of Technology, 2 Kaliskiego Str., 00-908 Warszawa, Poland
autor
  • Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30 059 Kraków, Poland
autor
  • Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30 059 Kraków, Poland
Bibliografia
  • [1] K. Niemi, P. Vuoristo, T. Mäntylä, Properties of alumina-based coatings deposited by plasma spray and detonation gun spray processes, Journal of Thermal Spray Technology 3, 199-203 (1994).
  • [2] S. C. Deevi, V. K. Sikka, Nickel and iron aluminides: An overview on properties, processing, and applications, Intermetallics 4, 357-375 (1996).
  • [3] P. Kratochvil, V. Vodickova, J. Hakl, T. Vlasak, P. Hanus, J. Pesicka, High temperature mechanical properties of Fe28Al4Cr alloy with additives TiB2 and Zr, Intermetallics 18, 1365-1368 (2010).
  • [4] W. Hong-Tao, L. Chang-Jiu, Y. Guan-Jun, L. Cheng-Xin, Z. Qiang, L. Wen-Ya, Microstructural characterization of cold-sprayed nanostructured Fe Al intermetallic compound coating and its ball-milled feedstock powders, Journal of Thermal Spray Technology 16, 669-676 (2007).
  • [5] C. Senderowski, Z. Bojar, Influence of detonation gun spraying conditions on the quality of Fe-Al intermetallic protective coatings in the presence of NiAl and NiCr interlayers, Journal of Thermal Spray Technology 18, 435-447 (2009).
  • [6] F. Dobes, J. Pesicka, P. Kratochvil, Creep of the Fe-18Al-4Cr alloy with zirconium addition, Intermetallics 18, 1353-1356 (2010).
  • [7] F. Dobes, K. Milicka, Estimation of ductility of Fe-Al alloys be means of small punch test, Intermetallics 18, 1357-1359 (2010).
  • [8] D. Vogel, A. Hotar, A. Vogel, M. Palm, F. U. Renner, Corrosion behaviour of Fe-Al(-Ti) alloys in steam, Intermetallics 18, 1375-1378 (2010).
  • [9] P. Hanus, E. Bartsch, M. Palm, R. Krein, K. Bauer-Partenheimer, P. Janschek, Mechanical properties ofaforged fe-25Al-2Ta steam turbine blade, Intermetallics 18, 1379-1384 (2010).
  • [10] A. Hotar, M. Palm, Oxidation resistance of the Fe-25Al-2Ta (at.%) in air, Intermetallics 18, 1390-1395 (2010).
  • [11] T. Skiba, P. Hausild, M. Karlik, K. Vanmeensel, J. Vleugels, Mechanical properties of spark plasma sintered FeAl intermetallics, Intermetallics 18, 1410-1414 (2010).
  • [12] R. Musalek, O. Kovarik, T. Skiba, P. Hausild, M. Karlik, J. Colmenares - Angulo, Fatigue properties of Fe-Al intermetallic coatings prepared by plasma spraying, Intermetallics 18, 1415-1418 (2010).
  • [13] C. Senderowski, Z. Bojar, W. Wołczyński, G. Roy, T. Czujko, Residual stresses determined by the modified Sachs method withinagas detonation sprayed coatings of the Fe-Al intermetallic, Archives of Metallurgy and Materials 52, 569-578 (2007).
  • [14] G. Ji, T. Grosdidier, N. Bozzolo, S. Launois, The mechanisms of microstructure formation inananostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering, Intermetallics 15, 109-118 (2007).
  • [15] C. Senderowski, Z. Bojar, W. Wołczyński, A. Pawłowski, Microstructure characterization of D-gun sprayed Fe-Al intermetallic coatings, Intermetallics 18, 1405-1409 (2010).
  • [16] C. Senderowski, A. Pawłowski, Z. Bojar, W. Wołczyński, M. Faryna, J. Morgiel, Ł. Major, TEMmicrostructure of Fe-Al coatings detonation sprayed onto steel substrate, Archives of Metallurgy and Materials 55, 373-381 (2010).
  • [17] A. Pawłowski, C. Senderowski, W. Wołczyński, J. Morgiel, Ł. Major, Detonation deposited Fe-Al coatings Part II: Transmission electron microscopy of interlayers and Fe-Al intermetallic coating detonation sprayed onto the 045 steel substrate, Archives of Metallurgy and Materials 56, 71-79 (2011).
  • [18] K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, O. Vander Biest, Modelling of the temperature distribution during field assisted sintering, Acta Materiallia 53, 4379-4388 (2005).
  • [19] U. Anselmi-Tamburini, S. Gennari, J. E. Garay, Z.A. Muni r, Fundamental investigations on the spark plasma sintering / synthesis process - II. Modelling of current and temperature distributions, Materials Science and Engineering 394A, 139-148 (2005).
  • [20] A. Pawłowski, C. Senderowski, Z. Bojar, M. Faryna, Detonation deposited Fe-Al coatings part I: Morphology of Ni(Al) and Cr(Ni) transition layers and coatings of Fe-Al type sprayed onto carbon steel substrate, Archives of Metallurgy and Materials 55, 1061-1071 (2010).
  • [21] O. Kubaschewski, IRON - Binary Phase Diagrams, Springer-Verlag, Berlin, Heidelberg, New York, 1982.
  • [22] M. J. Aziz, Model for solute redistribution during rapid solidification, Journal of Applied Physics 53, 1158-1168 (1982).
  • [23] W. Wołczyński, Back-diffusion phenomenon during the crystal growth by the Bridgman method, Chapter 2. in: Modelling of Transport Phenomena in Crystal Growth, p. 19-59, WIT Press, Southampton (UK) - Boston (USA), 2000, eds J.Szmyd & K.Suzuki.
  • [24] T. Umeda, T. Okane, W. Kurz, Phase selection during solidification of peritectic alloys, Acta Materiallia 44, 4209-4216 (1996).
  • [25] W. Wołczyński, J. Kloch, Solute redistribution after back-diffusion in cellular and dendritic growth of binary alloys, Bulletin of the Polish Academy of Sciences; Technical Sciences 46, 277-288 (1998).
  • [26] E. Scheil, Über die eutektische kristallization, Zeitschrift für Metallkunde 34, 70-80 (1942).
  • [27] J. Dutkiewicz, T. B. Massalski, Search for metallicg lasses in the Ag-Cu-Ge, Ag-Cu-Sb and Ag-Cu-Sb-Ge systems, Metallurgical Transactions 12A, 773-778 (1981).
  • [28] G. Boczkal, B. Mikułowski, W. Wołczyński, Oscillatory structure of the Zn-Cu-Ti single crystals, Materials Science Forum 649, 113-118 (2010).
  • [29] W. Wołczyński, Concentration micro-field for lamellar eutectic growth. Defect and Diffusion Forum 272, 123-138 (2007).
  • [30] W. Wołczyński, E. Guzik, J. Janczak-Rusch, D. Kopyciński, J. Golczewski, H. M. Lee, J. Kloch, Morphological characteristics of multi-layer / substrate systems, Materials Characterization 56, 274-280 (2006).
  • [31] W. Wołczyński, T. Okane, C. Senderowski, D. Zasada, B. Kania, J. Janczak-Rusch, Thermodynamic justification for the Ni/Al/Ni joint formation byadiffusion brazing, International Journal of Thermodynamics 14, 97-105 (2011).
  • [32] W. Wołczyński, J. Kloch, J. Janczak-Rusch, K. Kurzydłowski, T. Okane, Segregation profiles in diffusion soldered Ni/Al/Ni interconnections, Materials Science Forum 508, 385-392 (2006).
  • [33] W. Wołczyński, T. Okane, C. Senderowski, B. Kania, D. Zasada, J. Janczak-Rusch, Meta-stable conditions of diffusion brazing, Archives of Metallurgy and Materials 56, 311-323 (2011).
  • [34] W. Wołczyński, Transition phenomena in the diffusion soldering / brazing. Archives of Metallurgy and Materials 51, 609- 615 (2006).
  • [35] W. Wołczyński, J. Janczak-Rusch, J. Kloch, T. Rutti, T. Okane, Amodel for solidification of intermetallic phases from Ni-Al system and its application to diffusion soldering, Archives of Metallurgy and Materials 50, 1055-1068 (2005).
Uwagi
The financial support from National Science Centre – Poland (NCN) through project 2012/05/B/ST8/01794 is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b72c96a-847d-4532-a528-251f8492c898
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.