PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Development of mathematical and numerical models for the analysis of overlap laser beam welding of dissimilar materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The welding process of dissimilar materials causes a lot of technological issues related to different properties of materials of joined elements. Thermal conductivity is one of most important factors influencing the deformation of the weld. The change of thermal conductivity in the function of the temperature can produce various strains that cannot be predicted during construction design. Different structures of materials appear during joining of dissimilar materials as well as different characteristic zones of the joint and its mechanical properties. The most important is the proper identification of joint zones and the size of deformation at the production stage of welded construction. This work presents the numerical analysis of physical phenomena in overlap welding of two sheets made of S355 carbon steel and 304 austenitic steel using a laser beam. A three-dimensional discrete model is developed taking into account thermophysical properties changing with temperature. Temperature distribution and the shape of the welding pool is predicted on the basis of performer computer simulations. The influence of thermal load on the formation of stress and strain fields is determined.
Rocznik
Strony
15--26
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Department of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Czestochowa, Poland
  • Faculty of Architecture, Civil Engineering and Applied Arts, University of Technology, Katowice, Poland
  • Department of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Czestochowa, Poland
  • Department of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Czestochowa, Poland
Bibliografia
  • [1] Moraitis, G.A., & Labeas, G.N. (2008). Residual stress and distortion calculation of laser beam welding for aluminum lap joints. Journal of Materials Processing Technology, 198, 260-269. DOI: 10.1016/j.jmatprotec.2007.07.013.
  • [2] Pilarczyk J. (2003). Engineer’s Guide – Welding Engineering. WNT, Warszawa.
  • [3] Hietala, M., Järvenpää, A., Keskitalo, M., Jaskari, M., & Mäntyjärvi, K. (2019). Tensile and fatigue properties of laser-welded ultra-high-strength stainless spring steel lap joints. Procedia Manufacturing, 36, 131-137. DOI: 10.1016/j.promfg.2019.08.018.
  • [4] Wang, H., Wang, Y., Li, X., Wang, W., & Yang, X. (2021). Influence of assembly gap size on the structure and properties of sus301L stainless steel laser welded lap joint. Materials, 14, 996. DOI: 10.3390/ma14040996.
  • [5] Danielewski, H., & Skrzypczyk, A. (2020). Steel sheets laser lap joint welding – process analysis. Materials, 13(10), 2258. DOI: 10.3390/ma13102258.
  • [6] Meco, S., Pardal, G., Ganguly, S., Williams, S., & McPherson, N. (2015). Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components. Procedia Manufacturing, 67, 22-30. DOI: 10.1016/j.optlaseng.2014.10.006.
  • [7] Chen, L., Wang, Ch., Xiong, L., Zhang, X., & Mi, G. (2020). Microstructural, porosity and mechanical properties of lap joint laser welding for 5182 and 6061 dissimilar aluminum alloys under different place configurations. Materials and Design, 191, 108625. DOI: 10.1016/j.matdes.2020.108625.
  • [8] Danielewski, H., Skrzypczyk, A., Hebda, M., Tofil, Sz., Witkowski, G., Długosz, P., & Nigrovic, R. (2020). Numerical and metallurgical analysis of laser welded, sealed lap joints of S355J2 and 316L steels under different configurations. Materials, 13(24), 5819. DOI: 10.3390/ma13245819.
  • [9] Zhong, Y., Xie, J., Chen, Y., Yin, L., He, P., & Lu, W. (2022). Microstructure and mechanical properties of micro laser welding NiTiNb/Ti6Al4V dissimilar alloys lap joints with nickel interlayer. Materials Letters, 306, 130896. DOI: 10.1016/j.matlet.2021.130896.
  • [10] Yang, B., Zhao, H., Wu, L., Tan, C., Xia, H., Chen, B., & Song, X. (2020). Interfacial microstructure and mechanical properties of laser-welded 6061Al/AISI304 dissimilar lap joints via beam oscillation. Journal of Materials Research and Technology, 9(6), 14630-14644. DOI:10.1016/j.jmrt.2020.10.064.
  • [11] Scutelnicu, E., Iordachescu, M., Rusu, C.C., Mihailescu, D., & Ocaña, J.L. (2021). Metallurgical and mechanical characterization of low carbon steel – stainless steel dissimilar joints made by laser autogenous welding. Metals, 11, 810. DOI: 10.3390/met11050810.
  • [12] Barlas, Z. (2017). Weldability of CuZn30 Brass/DP600 steel couple by friction stir spot welding. Acta Physica Polonica A, 132(3), 991-993. DOI: 10.12693/APhysPolA.132.991.
  • [13] Shuhai, Ch., Huang, J., Jun, X., Xingke, Z., & Sanbao, L. (2015). Influence of processing parameters on the characteristics of stainless steel/copper laser welding. Journal of Materials Processing Technology, 222, 43-51. DOI: 10.1016/j.jmatprotec.2015.03.003.
  • [14] http://www.wisconsinwireworks.com/dissimilar_metals.html.
  • [15] Piekarska, W., Saternus, Z., Kubiak, M., & Domański, T. (2015). Numerical modelling of stress state and deformations in laser butt-welded sheets made of X5CrNi18-10 steel. Metal 2015:24th International Conference on Metallurgy and Materials, Tanger, 736-741.
  • [16] Jakubovičová, L., Ftorek, B., Baniari, V., Sapietová, A., Potoček, T., & Vaško, M. (2017). Engineering design of a test device. Procedia Engineering, 177, 520-525. DOI: 10.1016/j.proeng.2017.02.255.
  • [17] Kubiak, M., Piekarska, W., Stano, S., & Saternus, Z. (2015). Numerical modelling of thermal and structural phenomena in Yb:Yag laser butt-welded steel elements. Archives of Metallurgy and Materials, 60(2), 821-828. DOI: 10.1515/amm-2015-0213.
  • [18] Koric, S., & Thomas, B. (2007). Thermo-mechanical Model of Solidification Processes with ABAQUS. Abaqus Users Conference, Paris.
  • [19] Ghafouri, M., Ahn, J., Mourujärvi, J., Björk, T., & Larkiola, J. (2020). Finite element simulation of welding distortions in ultra-high strength steel S960 MC including comprehensive thermal and solid-state phase transformation models. Engineering Structures, 219, 110804. DOI: 10.1016/j.engstruct.2020.110804.
  • [20] Tsirkas, S.A., Papanikos, P., & Kermanidis Th. (2003). Numerical simulation of the laser welding process in butt-joint specimens. Journal of Materials Processing Technology, 134, 59-69. DOI: org/10.1016/S0924-0136(02)00921-4.
  • [21] Xu, G., Wu, Ch., Ma, X., & Wang, X. (2013). Numerical analysis of welding residual stress and distortion in laser+GMAW hybrid welding of aluminum alloy T-joint. Acta Metallurgica Sinica (English Letters), 26(3), 352-360. DOI: 10.1007/s40195-012-0166-5.
  • [22] Dassault System (2007), Abaqus FEA theory manual. Version 6.7, SIMULIA, USA.
  • [23] Wiśniewski S., & Wiśniewski T.S. (2012). Wymiana ciepła. Warszawa: WNT.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b722b5c-1267-4689-86df-1d1b29be6021
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.