PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Classification and inspection of milling surface roughness based on a broad learning system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Current vision-based roughness measurement methods are classified into two main types: index design and deep learning. Among them, the computation procedure for constructing a roughness correlation index based on image data is relatively difficult, and the imaging environment criteria are stringent and not universally applicable. The roughness measurement method based on deep learning takes a long time to train the model, which is not conducive to achieving rapid online roughness measurement. To tackle with the problems mentioned above, a visual measurement method for surface roughness of milling workpieces based on broad learning system was proposed in this paper. The process began by capturing photos of the milling workpiece using a CCD camera in a normal lighting setting. Then, the train set was augmented with additional data to lower the quantity of data required by the model. Finally, the broad learning system was utilized to achieve the classification prediction of roughness. The experimental results showed that the roughness measurement method in this paper not only had a training speed incomparable to deep learning models, but also could automatically extract features and exhibited high recognition accuracy.
Rocznik
Strony
483--503
Opis fizyczny
Bibliogr. 24 poz., fot., rys., tab., wykr., wzory
Twórcy
autor
  • School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, People’s Republic of China
autor
  • School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, People’s Republic of China
autor
  • School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, People’s Republic of China
autor
  • School of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541006, People’s Republic of China
Bibliografia
  • [1] He, B., Ding, S., & Shi, Z. (2021). A comparison between profile and areal surface roughness parameters. Metrology and Measurement Systems, 28(3), 413-438. https://doi.org/10.24425/mms.2021.137133
  • [2] He, B., Zheng, H., Ding, S., Yang, R., & Shi, Z. (2021). A review of digital filtering in evaluation of surface roughness. Metrology and Measurement Systems, 28(2). https://doi.org/10.24425/mms.2021.136606
  • [3] Mathia, T. G., Pawlus, P., & Wieczorowski, M. (2011). Recent trends in surface metrology. Wear, 271(3-4), 494-508. https://doi.org/10.1016/j.wear.2010.06.001
  • [4] Yilbas, Z., & Hasmi, M. S. J. (1999). Surface roughness measurement using an optical system. Journal of Materials Processing Technology, 88(1-3), 10-22. https://doi.org/10.1016/S0924-0136(98)00356-2
  • [5] Chang, H. K., Kim, J. H., Kim, I. H., Jang, D. Y., & Han, D. C. (2007). In-process surface roughness prediction using displacement signals from spindle motion. International Journal of Machine Tools and Manufacture, 47(6), 1021-1026. https://doi.org/10.1016/j.ijmachtools.2006.07.004
  • [6] Liu, W., Tu, X., Jia, Z., Wang, W., Ma, X., & Bi, X. (2013). An improved surface roughness measurement method for micro-heterogeneous texture in deep hole based on gray-level co-occurrence matrix and support vector machine. The International Journal of Advanced Manufacturing Technology, 69(1), 583-593. https://doi.org/10.1007/s00170-013-5048-0
  • [7] Tsai, D. M., Chen, J. J., & Chen, J. F. (1998). A vision system for surface roughness assessment using neural networks. The International Journal of Advanced Manufacturing Technology, 14(6), 412-422. https://doi.org/10.1007/BF01304620
  • [8] Huaian, Y. I., Jian, L. I. U., Enhui, L. U., & Peng, A. O. (2016). Measuring grinding surface roughness based on the sharpness evaluation of colour images. Measurement Science and Technology, 27(2), 025404. https://doi.org/10.1088/0957-0233/27/2/025404
  • [9] Yi, H., Liu, J., Ao, P., Lu, E., & Zhang, H. (2016). Visual method for measuring the roughness of a grinding piece based on color indices. Optics express, 24(15), 17215-17233. https://doi.org/10.1364/OE.24.017215
  • [10] Huaian, Y., Xinjia, Z., Le, T., Yonglun, C., & Jie, Y. (2020). Measuring grinding surface roughness based on singular value entropy of quaternion. Measurement Science and Technology, 31(11), 115006. https://doi.org/10.1088/1361-6501/ab9aa9
  • [11] Chen, Y., Yi, H., Liao, C., Huang, P., & Chen, Q. (2021). Visual measurement of milling surface roughness based on Xception model with convolutional neural network. Measurement, 186, 110217. https://doi.org/10.1016/j.measurement.2021.110217
  • [12] Rifai, A. P., Aoyama, H., Tho, N. H., Dawal, S. Z. M., & Masruroh, N. A. (2020). Evaluation of turned and milled surfaces roughness using convolutional neural network. Measurement, 161, 107860. https://doi.org/10.1016/j.measurement.2020.107860
  • [13] He, Y., Zhang, W., Li, Y. F., Wang, Y. L., Wang, Y., & Wang, S. L. (2021). An approach for surface roughness measurement of helical gears based on image segmentation of region of interest. Measurement, 183, 109905. https://doi.org/10.1016/j.measurement.2021.109905
  • [14] Pao, Y. H., Park, G. H., & Sobajic, D. J. (1994). Learning and generalization characteristics of the random vector functional-link net. Neurocomputing, 6(2), 163-180. https://doi.org/10.1016/0925-2312(94)90053-1
  • [15] Twardowski, P., Wojciechowski, S., Wieczorowski, M., & Mathia, T. (2011). Surface roughness analysis of hardened steel after high-speed milling. Scanning, 33(5), 386-395. https://doi.org/10.1002/sca.20274
  • [16] Chen, C. P., & Liu, Z. (2017). Broad learning system: An effective and efficient incremental learning system without the need for deep architecture. IEEE Transactions on Neural Networks and Learning Systems, 29(1), 10-24. https://doi.org/10.1109/TNNLS.2017.2716952
  • [17] McDonald, G. C. (2010). Tracing ridge regression coefficients. Wiley Interdisciplinary Reviews: Computational Statistics, 2(6), 695-703. https://doi.org/10.1002/wics.126
  • [18] Lei, M., Rao, Z., Li, M., Yu, X., & Zou, L. (2019). Identification of coal geographical origin using near infrared sensor based on broad learning. Applied Sciences, 9(6), 1111. https://doi.org/10.3390/app9061111
  • [19] Jiaqiang, E., Han, D., Qiu, A., Zhu, H., Deng, Y., Chen, J., Zhao, X., Zuo, W., Wang, H., Chen, J., & Peng, Q. (2018). Orthogonal experimental design of liquid-cooling structure on the cooling effect of a liquid-cooled battery thermal management system. Applied Thermal Engineering, 132, 508-520. https://doi.org/10.1016/j.applthermaleng.2017.12.115
  • [20] Aburomman, A. A., & Reaz, M. B. I. (2017). A novel weighted support vector machines multiclass classifier based on differential evolution for intrusion detection systems. Information Sciences, 414, 225-246. https://doi.org/10.1016/j.ins.2017.06.007
  • [21] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778). https://doi.org/10.1109/CVPR.2016.90
  • [22] Karar, M. E., Hemdan, E. E. D., & Shouman, M. A. (2021). Cascaded deep learning classifiers for computer-aided diagnosis of COVID-19 and pneumonia diseases in X-ray scans. Complex & Intelligent Systems, 7(1), 235-247. https://doi.org/10.1007/s40747-020-00199-4
  • [23] Zeng, G. (2020). On the confusion matrix in credit scoring and its analytical properties. Communications in Statistics - Theory and Methods, 49(9), 2080-2093. https://doi.org/10.1080/03610926.2019.1568485
  • [24] Carrington, A. M., Fieguth, P. W., Qazi, H., Holzinger, A., Chen, H. H., Mayr, F., & Manuel, D. G. (2020). A new concordant partial AUC and partial c statistic for imbalanced data in the evaluation of machine learning algorithms. BMC Medical Informatics And Decision Making, 20(1), 1-12. https://doi.org/10.1186/s12911-019-1014-6
Uwagi
1. This work was supported in part by the National Natural Science Foundation of China (Grant No. 52065016), the Guangxi Graduate Student Innovation Project in 2021 (Grant No. YCSW2021204), and Doctoral Start-Up Foundation of Guilin University of Technology (Grant No. GLUTQD2017060).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b70dac9-dbb4-4777-8419-fc2804c16bdb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.