PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Machine Learning-Based Small Cell Location Selection Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the authors present an algorithm for determining the location of wireless network small cells in a dense urban environment. This algorithm uses machine learning, such as k-means clustering and spectral clustering, as well as a very accurate propagation channel created using the ray tracing method. The authors compared two approaches to the small cell location selection process – one based on the assumption that end terminals may be arbitrarily assigned to stations, and the other assuming that the assignment is based on the received signal power. The mean bitrate values are derived for comparing different scenarios. The results show an improvement compared with the baseline results. This paper concludes that machine learning algorithms may be useful in terms of small cell location selection and also for allocating users to small cell base stations.
Rocznik
Tom
Strony
120--126
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
  • Institute of Radiocommunications, Faculty of Computing and Telecommunications, Poznań University of Technology, Polanka 3, 60-995 Poznań, Poland
  • Institute of Radiocommunications, Faculty of Computing and Telecommunications, Poznań University of Technology, Polanka 3, 60-995 Poznań, Poland
Bibliografia
  • [1] I. A. M. Balapuwaduge and F. Y. Li, „Hidden Markov model based machine learning for mMTC device cell association in 5G networks", in Proc. IEEE Int. Conf. on Commun. (ICC), Shanghai, China, 2019, pp. 1-6 (DOI: 10.1109/ICC.2019.8761913).
  • [2] J. Yang, C. Wang, X. Wang, and C. Shen, „A machine learning approach to user association in enterprise small cell networks", in Proc. Int. Conference on Communications in China (ICCC), Beijing, China, 2018, pp. 850-854 (DOI: 10.1109/ICCChina.2018.8641148).
  • [3] W. Qi, B. Zhang, B. Chen, and J. Zhang, „A user-based K-means clustering offloading algorithm for heterogeneous network", in Proc. 8th Annual Comput. and Commun. Workshop and Conf. (CCWC), Las Vegas, NV, 2018, pp. 307-312 (DOI: 10.1109/CCWC.2018.8301769).
  • [4] Y. Xu, W. Xu, Z. Wang, J. Lin, and S. Cui, „Load balancing for ultradense networks: a deep reinforcement learning-based approach", IEEE Internet of Things Journal, vol. 6, no. 6, pp. 9399-9412, 2019 (DOI: 10.1109/JIOT.2019.2935010).
  • [5] R. de Paula Parisotto et al., „Drone base station positioning and power allocation using reinforcement learning", in Proc. 16th Int. Symp. on Wireless Commun. Systems (ISWCS), Oulu, Finland, 2019, pp. 213-217 (DOI: 10.1109/ISWCS.2019.8877247).
  • [6] L. Wang, Y. Chao, S. Cheng, and Z. Han, „An integrated affinity propagation and machine learning approach for interference management in drone base stations", IEEE Trans. on Cognitive Commun. and Networking, vol. 6, no. 1, pp. 83-94, 2020 (DOI: 10.1109/TCCN.2019.2946864).
  • [7] J. MacQueen, „Some methods for classiffication and analysis of multivariate observations", in Proc. of the fifth Berkeley Symp. on Mathematical Statistics and Probability, vol. 1, no. 14, 1967, pp. 281-297 [Online]. Available: http://digitalassets.lib.berkeley.edu/math/ucb/text/math s5 v1 article-17.pdf
  • [8] U. Von Luxburg, „A tutorial on spectral clustering", Statistics and Computing, vol. 17, no. 4, pp. 395-416, 2007 (DOI: 10.1007/s11222-007-9033-z).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b6fe10b-b9b0-4217-bb2c-ad168d743a90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.