PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Inoculation on the Mechanical Properties of AZ91

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of Ca element on the microstructure evolution of the AZ91 magnesium alloy was investigated in this research. The magnesium-aluminium alloy AZ91 was inoculated with the Emgesal® Flux 5 to refine its microstructure and also improve its microstructure. Six different concentrations of the Emgesal® Flux 5 content were tested, ranging from 0.1 to 0.6% wt., and compared to the baseline of the AZ91 alloy without inoculation. Melted metal was poured into a preheated metallic mould. Samples to test were achieved after turning treatment. Formed microstructure was assessed using an optical microscope. The microstructure was refined for every tested samples. Mechanical properties such as tensile strength, elongation, Brinell hardness, Vickers microhardness, abrasion resistance and adhesive resistance were tested on the inoculated samples and compared to the non-inoculated AZ91. Introducing an Emgesal®Flux 5 inoculant caused a change in the tensile strength, elongation, Brinell hardness, Vickers microhardness, abrasive wear resistance as well as adhesive wear resistance in each examined concentration.
Rocznik
Strony
15--20
Opis fizyczny
Bibliogr. 22 poz., il., tab., wykr.
Twórcy
  • Lodz University of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
autor
  • Lodz University of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
  • University of Leeds, Faculty of Engineering and Physical Sciences, School of Mechanical Engineering, Leeds, United Kingdom
  • Lodz University of Technology, Department of Materials Engineering and Production Systems, Łódź, Poland
Bibliografia
  • [1] Mordike, B.L. & Ebert, T. (2001). Magnesium. Properties – applications – potential. Materials Science and Engineering. A. 302(1), 37-45. DOI: 10.1016/S0921-5093(00)01351-4.
  • [2] Das, S. (2003). Magnesium for automotive applications: Primary production cost assessment. The Journal of The Minerals. Metals & Materials Society (TMS). 55, 22-26. DOI: https://doi.org/10.1007/s11837-003-0204-x.
  • [3] Luo, A.A. (2005). Wrought magnesium alloys and manufacturing processes for automotive applications. SAE Technical Paper 2005-01-0734. 411-421. DOI: https://doi.org/10.4271/2005-01-0734.
  • [4] Hu, H., Yu, A., Li, N. & Allison, J.E. (2006). Potential magnesium alloys for high temperature die cast automotive applications: a review. Materials and Manufacturing Processes. 18(5), 687-717. DOI: https://doi.org/10.1081/AMP120024970.
  • [5] Rapiejko, C., Pisarek, B. & Pacyniak, T. (2017). Effect of intensive cooling of alloy AZ91 with a chromium addition on the microstructure and mechanical properties of the casting. Archives of Metallurgy and Materials. 62(4), 2199-2204. https://doi.org/10.1515/amm-2017-0324.
  • [6] Chen, L., Zhao, Y., Li, M., Li, L., Hou, L., & Hou, H. (2021). Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions. Materials Science and Engineering: A. 804(140793). https://doi.org/10.1016/j.msea.2021.140793.
  • [7] Zhang, Y., Huang, X., Ya, L. I., Zhenduo, M. A., Ying, M. A., & Yuan, H. A. O. (2017). Effects of samarium addition on as cast microstructure, grain refinement and mechanical proper ties of Mg-6Zn-0.4Zr magnesium alloy. Journal of Rare Earths. 35(5). 494-502. https://doi.org/10.1016/S1002- 0721(17)60939-6.
  • [8] Yand, M., Liu, Y., Liu, J. & Song, Y. (2014) Corrosion and mechanical properties of AM50 magnesium alloy after being modified by 1 wt.% rare earth element gadolinium. Journal of Rare Earths. 32(6), 558-563. https://doi.org/10.1016/S1002- 0721(14)60108-3.
  • [9] Jiang, N., Chen, L., Meng., Fang, C., Hao, H. & Zhang, X. (2016). Effect of neodymium, gadolinium addition on microstructure and mechanical properties of AZ80 magnesium alloy. Journal of Rare Earths. 34(6), 632-637. https://doi.org/10.1016/S1002-0721(16)60072-8.
  • [10] Liu, W., Jiang, B., Liu, B., & Pan, F. (2019) Effect of Ce addition on hot tearing behavior of AZ91 alloy. Progress in Natural Science: Materials International. 29, 453-456. https://doi.org/10.1016/j.pnsc.2019.07.002.
  • [11] Jun, C., Qing, Z., Quanan, L. (2018). Microstructure and mechanical properties of AZ61 magnesium alloys with the Y and Ca combined addition. International Journal of Metalcasting. 12(4), 897-905. DOI: 10.1007/s40962-018-0222-7.
  • [12] Zhu, G., Wang, L., Zhou, H., Wang, J., Shen, Y., Tu, P., Zhu, H., Liu, W. & Zeng X. (2019) Improving ductility of a Mg alloy via non-basal < a > slip induced by Ca addition. International Journal of Plasticity. 120, 164-179. https://doi.org/10.1016/j.ijplas.2019.04.020.
  • [13] Yin, P., Li, N.F., Lei, T., Liu, L. & Ouyang, C. (2013) Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys. Journal of Materials Science: Materials in Medicine. 24(6), 1365-1373. https://doi.org/10.1007/s10856-013-4856-y.
  • [14] Wan, Y., Xiong, G., Luo, H., He, F., Huang, Y. & Zhou, X. (2008) Preparation and characterization of a new biomedical magnesium–calcium alloy. Materials and Design. 29(10), 2034-2037. https://doi.org/10.1016/j.matdes.2008.04.017.
  • [15] Han, Y.Y., You, C., Zhao, Y., Chen, M.F. & Wang, L. (2019). Effect of Mn element addition on the microstructure, mechanical properties, and corrosion properties of Mg-3Zn-0.2 Ca Alloy. Frontiers in Materials. 6 (324). https://doi.org/10.3389/fmats.2019.00324.
  • [16] Data Emgesal Flux 5. Retrived June 15, 2022 from: https://www.lhoist.com/sites/lhoist/files/brochure_emgesalr_en.pdf.
  • [17] PN-EN ISO10025-2:2007. Hot rolled products of structural steels. Part 2: Technical delivery conditions for non-alloy structural steels.
  • [18] PN-EN ISO 6892-1:2020-05. Metallic materials – Tensile testing – Part 1: Method of test at room temperature.
  • [19] PN-EN ISO 6506-1:2014-12. Metallic materials – Brinell hardness test – Part 1: Test method.
  • [20] PN-EN ISO 6507-1:2018-05. Metallic materials – Vickers hardness test – Part 1: Test method.
  • [21] Gumienny, G. (2011). Wear resistance of nodular cast iron with carbides. Archives of Foundry Engineering. 11(spec.3), 81-88. ISSN (1897-3310).
  • [22] PN-EN 1753:2001. Magnesium and magnesium alloys. Magnesium alloy ingots and castings.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b6f2dfe-c179-4538-be35-614350dfe6a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.