PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Cobalt Aluminate Content and Pouring Temperature on Macrostructure, Tensile Strength and Creep Rupture of Inconel 713C Castings

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of cobalt aluminate inoculant addition and melt-pouring temperature on the structure and mechanical properties of Ni-based superalloy was studied. The first major move to control the quality of investment cast blades and vanes was the control of grain size. Cobalt aluminate (CoAl2 O4 ) is the most frequently utilized inoculant in the lost-wax casting process of Ni-based superalloys. The inoculant in the prime coat of moulds and pouring temperature play a significant role in grain size control. The finest surface grains were obtained when the internal surface of shell mould was coated with cobalt aluminate and subsequently pouring was at 1480°C. The influence of selected casting parameters and inoculant addition on mechanical properties was investigated on the basis of tensile, creep and hardness testing. The effect of grain refinement on mechanical properties were consistent with established theories. Tests conducted at ambient temperature indicated a beneficial effect of grain refinement both on tensile strength and hardness. In contrast at elevated temperature during creep, the reverse trend was observed.
Słowa kluczowe
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Al. Mickiewicza 30, 30-059 Kraków
autor
  • Foundry Research Institute, 73 Zakopiańska Str., 30-418 Kraków, Poland
autor
  • Consolidated Precision Products Poland, 120 Hetmanska Str., 35-078 Rzeszow, Poland
  • AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Department of Physical and Powder Metallurgy, Al. Mickiewicza 30, 30-059 Kraków
Bibliografia
  • [1] R. Reed, The Superalloys: Fundamentals and applications, Cambridge University Press, Cambridge (2006).
  • [2] Ł. Rakoczy et al., Adv. in Mat. Sci. 17 (2), 55-63 (2017) DOI:10.1515/adms-2017-0011.
  • [3] A. Chamanfar et al., Mat. Sci. and Eng. A 642, 230-400 (2015) http://dx.doi.org/10.1016/j.msea.2015.06.087.
  • [4] D. Laughlin, K. Hono, Physical Metallurgy, Elsevier (2014) http://dx.doi.org/10.1016/B978-0-444-53770-6.00022-8 .
  • [5] R. Ramesh et al., J. Mat. Sci. 27, 270-278 (1992).
  • [6] A. Royer et al., Scr. Mat. 40 (8), 955-961 (1991).
  • [7] A. Szczotok, H. Matysiak, J. of Mat. Eng. and Perform. 23, 2749-2759 (2014).
  • [8] S. Roskosz, R. Cygan, Inż. Mat. 37 (2), 59-64 (2016).
  • [9] P. Willemin, M. Durrand-Charre, J. of Mat. Sci. 25, 168-174 (1990).
  • [10] H. Matysiak et al., JOM. 68 (1), 185-197 (2015) https://doi.org/10.1007/s11665-014-1123-4
  • [11] M. Zielińska, J. Sieniawski, Arch. of Met. and. Mat. 58 (1), 95-98 (2013) https://doi.org/10.2478/v10172-012-0157-6 .
  • [12] T. Murakumo at el., “Superalloys” 155-62 (2004).
  • [13] W. Jin, F. Bai, T. Li, G. Yin, Mat. Let. 62 1585-1588 (2008) http://dx.doi.org/10.1016/j.matlet.2007.09.028.
  • [14] Ł. Rakoczy, R. Cygan, Analysis of temperature distribution in shell mould during thin-wall superalloy casting and its effect on the resultant microstructure, Arch. of Civ. and Mech. Eng. 18, 1441-1450 (2018). https://doi.org/10.1016/j.acme.2018.05.008.
  • [15] H. Matysiak et al., J. of Mat. Eng. and Perform. 23 (9), 3305-3013 (2014). https://doi.org/10.1007/s11665-014-1123-4.
  • [16] M. Azadi, M. Azadi, Mat. Sci. and Eng. 689 (24), 298-305 (2017).
  • [17] https://www.nickelinstitute.org/~/media/Files/TechnicalLiterature/Alloy713C_337_.ashx.
  • [18] F. Jian, Y. Bin, High Temperature Alloys for Gas Turbines: Investigation of the Surface Grain Refinement for Superalloys Castings, Springer, Dordrecht (1982). https://doi.org/10.1007/978-94-009-7907-9_50.
  • [19] F. Zupanic et al., J. Alloy. Compd. 329, 290-297 (2001).
  • [20] W. D. Callister, Materials Science and Engineering, John Wiley & Sons, New York (2007).
  • [21] C. T. Liu, Ordered Intermetallics: Physical Metallurgy and Mechanical Behaviour, Springer Netherlands, Dordrecht (1992)
  • [22] F. Nabarro, The Physics of Creep, Taylor and Francis, London (1995).
  • [23] B. Burton, J. of. Mat. Sci. 4900-4903, (28) 1993.
Uwagi
EN
1. This research work was supported by National Centre for Research and Development, Grant No. LIDER/227/L-6/14/NCBR/2015. The authors wish to express appreciation to Prof. A.S. Wronski for the discussion and language correction of manuscript.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b6eb157-3950-4daf-aa22-4950327e1467
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.