PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis, evaluation, and optimization of bio-medical thermo-resistive micro-calorimetric flow sensor using an analytical approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sensitive MEMS-based thermal flow sensors are the best choice for monitoring the patient’s respiration prompt diagnosis of breath disturbances. In this paper, open space micro-calorimetric flow sensors are investigated as precise monitoring tools. The differential energy balance equation, including convection and conduction terms, is derived for thermal analysis of the considered sensor. The temperature-dependent thermal conductivity of the thin silicon-oxide membrane layer is considered in the energy balance equation. The derived thermal non-linear differential equation is solved using a well-known analytical method, and a finite-element numerical solution is used for the confirmation. Results show that the presented analytical model offers a precise tool for evaluating these sensors. The effects of flow and thin membrane film parameters on thermo-resistive micro-calorimetric flow sensors’ performance and sensitivity are evaluated. The optimization has been performed at different flow velocities using a genetic algorithm method to determine the optimum configuration of the considered flow sensor. The geometrical parameters are selected as a decision variable in the optimization procedure. In the final step, using optimization results and curve-fitting, the expressions for the optimum decision variables have been derived. The sensor’s optimum configuration is achieved analytically based on flow velocity with the analytical terms for optimum decision variables.
Rocznik
Strony
109--125
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., wzory
Twórcy
  • Department of Mechanical Engineering, University of Qom, Qom, Iran
  • Thermal Cycle and Heat Exchangers Department, Niroo Research Institute, Tehran, Iran
Bibliografia
  • [1] Xu, W., Song, K., Ma, S., Chiu, Y., & Lee, Y. K. (2014, October). One dimensional model of thermoresistive micro calorimetric flow sensors tor gases and liquids considering Prandtl numer effect. In Conf. on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS2014) (pp. 2333-2335).
  • [2] Xu, W., Song, K., Ma, S., Gao, B., Chiu, Y, & Lee, Y. K. (2016). Theoretical and experimental investigations of thermoresistive micro calorimetric flow sensors fabricated by CMOS MEMS technology. Journal of Microelectromechanical Systems, 25(5), 954-962. https://doi.org/10.1109/JMEMS.2016.2596282
  • [3] Silvestri, S., & Schena, E. (2012). Micromachined flow sensors in biomedical applications. Micromachines, 3(2) 225-243. https://doi.org/10.3390/mi3020225
  • [4] Shaun, F., Sarkar, S., Marty, F., Poulichet, P., Cesar, W., Nefzaoui, E., & Bourouina, T. (2018). Sensitivity optimization of micro-machined thermo-resistive flow-rate sensors on silicon substrates. Journal of Micromechanics and Microengineering, 28(7), 074002. https://doi.org/10.1088/1361-6439/aab6bd
  • [5] Xu, W., Gao, B., Ahmed, M., Duan, M., Wang, B., Mohamad, S., Bermak, A. & Lee, Y. K. (2017, January). A water-level encapsulated CMOS MEMS thermoresistive calorimetric flow sensor with integrated packaging design. In 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) (pp. 989-992). IEEE, https://doi.org/10.1109/MEMSYS.2017.7863577
  • [6] Xu, W., Ma, S., Wang, X., Chiu, Y., & Lee, Y. K. (2019). A CMOS-MEMS thermoresistive micro calorimetric flow sensor with temperature compensation. Journal of Microelectromechanical Systems, 28(5). 841-849. https://doi.org/10.1109/JMEMS.2019.2928317
  • [7] Kohl, K., Beigelbeck, R., Loschmidt, P., Kuntner, J., & Jachimowicz, A. (2006). FEM-based analysis of micromachined calorimetric flow sensors (pp. 1215-1218). IEEE. https://doi.org/10.1109/ICSENS.2007.355846
  • [8] Dumstorff, G., Brauns, E., & Lang, W. (2015). Investigations into packaging technology for membrane-based thermal flow sensors. Journal of Sensors and Sensor Systems, 4(1), 45-52. https://doi.org/10.5194/JSSS-4-45-2015
  • [9] Arevalo, A., Byas, E., & Foulds, I. G. (2013, October). Simulation of thermal transport based flow meter for microfluidics applications. In 2013 COMSOL Conference, Rotterdam, Holland.
  • [10] Xu, W., Gao, B., Ma, S., Zhang, A., Chiu, Y., & Lee, Y. K. (2016, January). Low-cost temperature-compensated thermoresistive micro calorimetric flow sensor by using 0.35 μm CMOS MEMS technology. In 2016 IEEE 29th International Conference, on Micro Electro Mechanical Systems (MEMS) (pp. 189-192). IEEE. https://doi.org/10.1109/MEMSYS.2016.7421590
  • [11] Xu, W., Gao, B., Lee, Y. K., & Chiu, Y. (2016, April). Packaging effect on the flow separation of CMOS thermoresistive micro calorimetric flow sensors. In 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 62-65). IEEE. https://doi.org/10.1109/NEMS.2016.7758201
  • [12] Lammerink, T. S., Tas, N. R., Elwenspoek, M., & Fluitman, J. H. (1993). Micro-liquid flow sensor. Sensors and Actuators A: Physical, 37, 45-50. https://doi.org/10.1016/0924-4247(93)80010-E
  • [13] Dinh, T., Phan, H. P., Qamar, A., Woodfield, P., Nguyen, N. T., & Dao, D. V. (2017). Thermoresistive effect for advanced thermal sensors: Fundamentals, design considerations, and applications. Journal of Microelectromechanical Systems, 26(5), 966-986. https://doi.org/10.1109/JMEMS.2017.2710354
  • [14] Balakrishnan, V., Dinh, T., Phan, H. P., Kozeki, T., Namazu, T., Dao, D. V., & Nguyen, N. T. (2017). Steady-state analytical model of suspended p-type 3C-SiC bridges under consideration of Joule heating. Journal of Micromechanics and Microengineering, 27(7), 075008. https://doi.org/10.1088/1361-6439/aa7180
  • [15] Dijkstra, M., de Boer, M. J., Berenschot, J. W., Lammerink, T. S., Wiegerink, R. J., & Elwenspoek, M. (2008). Miniaturized thermal flow sensor with planar-integrated sensor structures on semi-circular surface channels. Sensors and Actuators A: Physical, 743(1), 1-6. https://doi.org/10.1016/j.sna.2007.12.005
  • [16] Haneveld, J., Lammerink. T. S., de Boer, M. J., Sanders, R. G., Mehendale, A.. Lötters, J. C., ... & Wiegerink, R. J. (2010). Modeling, design, fabrication and characterization of a micro Coriolis mass flow sensor. Journal of Micromechanics and Microengineering, 20(12), 125001. https://doi.org/10.1088/0960-1317/20/12/125001
  • [17] Nguyen. N. T. (1997). Micromachined flow sensors - a review. Flow Measurement and Instrumentation, 8(1), 7-16. https://doi.org/10.1016/S0955-5986(97)00019-8
  • [18] van Kuijk, J., Lammerink, T. S. J., De Bree, H. E., Elwenspoek, M., & Fluitman, J. H. J. (1995). Multi-parameter detection in fluid flows. Sensors and Actuators A: Physical, 47(1-3), 369-372. https://doi.org/10.1016/0924-4247(94)00923-6
  • [19] Nguyen, N. T. (2005). A novel thermal sensor concept for flow direction and flow velocity. IEEE Sensors Journal, 5(6), 1224-1234. https://doi.org/10.1109/JSEN.2005.858924
  • [20] Issa, S., Sturm. H., & Lang, W. (2011). Modeling of the response time of thermal flow sensors. Micromachines, 2(4), 385-393. https://doi.org/10.3390/mi2040385
  • [21] Franulović, M., Marković, K., & Trajkovski, A. (2021). Calibration of material models for the human cervical spine ligament behaviour using a genetic algorithm. Facta Universitatis, Series: Mechanical Engineering.
  • [22] Ghalambaz, M., Ghalambaz, M., & Edalatifar, M. (2015). Buckling analysis of cantilever nanoactuators immersed in an electrolyte: a close form solution using Duan-Rach modified Adomian decomposition method. Journal of Applied and Computational Mechanics, 1(4), 207-219. https://dx.doi.org/10.22055/jacm.2015.12024
  • [23] Noghrehabadi, A., Ghalambaz, M., & Ghanbarzadeh, A. (2012). A new approach to the electrostatic pull-in instability of nanocantilever actuators using the ADM-Padé technique. Computers & Mathematics with Applications, 64(9), 2806-2815. https://doi.org/10.1016/j.camwa.2012.04.013
  • [24] Xu, W., Wang, B., Duan, M., Ahmed, M., Bermak, A., & Lee, Y. K. (2019). A three-dimensional integrated micro calorimetric flow sensor in CMOS MEMS technology. IEEE Sensors Letters, 3(2), 1-4. https://doi.org/10.1109/LSENS.2019.2893151
  • [25] Ejeian, F., Azadi, S., Razmjou, A., Orooji, Y., Kottapalli, A., Warkiani, M. E., & Asadnia, M. (2019). Design and applications of MEMS flow sensors: A review. Sensors and Actuators A: Physical, 295. 483-502. https://doi.org/10.1016/j.sna.2019.06.020
  • [26] Algamili, A. S., Khir, M. H. M., Dennis, J. O., Ahmed, A. Y., Alabsi, S. S., Hashwan, S. S. B., & Junaid, M. M. (2021). A review of actuation and sensing mechanisms in MEMS-based sensor devices. Nanoscale Research Letters, 16(1), 1-21. https://doi.org/10.1186/s11671-021-03481-7
  • [27] Babaelahi, M., Ganji, D. D., & Joneidi, A. A. (2010). Analysis of velocity equation of steady flow of a viscous incompressible fluid in channel with porous walls. International Journal for Numerical Methods in Fluids, 63(9), 1048-1059. https://doi.org/10.1002/fld.2114
  • [28] Sayyaadi, H., & Babaelahi, M. (2010). Exergetic optimization of a refrigeration cycle for re-liquefaction of LNG boil-off gas. International Journal of Thermodynamics. 13(4). 127-133.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b6a7aa9-7b68-46c4-982b-9e32af62ae33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.