PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Failure identification and isolation of DC-DC boost converter using a sliding mode controller and adaptive threshold

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
DC-DC converters have become essential components in various industrial applications, including aerospace, electric vehicles, and renewable energy systems. However, ensuring enhanced reliability remains a critical challenge for these converters. Fault diagnosis and reliability analysis are crucial for preventing damage and minimizing maintenance costs. This study focuses on investigating the operational behavior of DC-DC boost converters under normal and faulty conditions, precisely targeting open-circuit and short-circuit faults in converter switches. To achieve this, an adaptive threshold approach is introduced for effective fault detection. The adaptive threshold value is calculated based on measured voltage and current signals, along with their corresponding reference signals from the primary control system. The research is structured into two parts: the first part addresses sliding mode control aspects, ensuring regulated output voltages, output currents, and capacitor voltage for sustained converter operation. The second part investigates fault diagnosis, analyzing the impact of defective DC-DC converters on the overall electrical system functionality. The proposed algorithm's performance is evaluated and validated through simulations in MATLAB/Simulink environment. Furthermore, based on the results’ comparison, the proposed approach of the sliding mode controller and adaptive threshold contributes to enhancing the reliability of DC-DC converters and enables effective fault detection and isolation.
Czasopismo
Rocznik
Strony
art. no. 2024303
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Laboratoire d’Automatique Appliquée (LAA), département d’automatisation et électrification des procédés, Faculté des hydrocarbures et de la chimie (FHC), Université M’hamed Bougara - Boumerdès, 35000, Algérie
  • Laboratoire d’Automatique Appliquée (LAA), département d’automatisation et électrification des procédés, Faculté des hydrocarbures et de la chimie (FHC), Université M’hamed Bougara - Boumerdès, 35000, Algérie
  • Laboratoire d’Automatique Appliquée (LAA), département d’automatisation et électrification des procédés, Faculté des hydrocarbures et de la chimie (FHC), Université M’hamed Bougara - Boumerdès, 35000, Algérie
  • Département Evaluation des Réservoirs, Direction des Opérations Exploration, Division Exploration, Sonatrach, Hassi Messaoud 30500, Ouergla, Algérie
autor
  • Laboratoire d’Automatique Appliquée (LAA), département d’automatisation et électrification des procédés, Faculté des hydrocarbures et de la chimie (FHC), Université M’hamed Bougara - Boumerdès, 35000, Algérie
Bibliografia
  • 1. Gehan O, Pigeon E, Menard T, Pouliquen M, Gualous H, Slamani Y. A Nonlinear state feedback for DC/DC boost converters. Journal of Dynamic Systems, Measurement, and Control 2017; 139(1): 011010. https://doi.org/10.1115/1.4034602.
  • 2. Mansour AS, Zaky MS. A new extended single-switch high gain DC-DC boost converter for renewable energy applications. Scientific Reports 2023; 13(1): 264. https://doi.org/10.1038/s41598-022-26660-7.
  • 3. Adnan MF, Oninda MAM, Nishat MM, Islam N. Design and simulation of a DC-DC boost converter with pid controller for enhanced performance. International Journal of Engineering Research and 2017; V6(09): IJERTV6IS090029. https://doi.org/10.17577/IJERTV6IS090029.
  • 4. Pandey A, Borkar R, Kumbhar S, Ghunke P, Jain P. Comparison of power electronic converters with sliding mode control and open loop control. 2020 International Conference on Convergence to Digital World - Quo Vadis (ICCDW) 2020; 1-5. https://doi.org/10.1109/ICCDW45521.2020.9318726.
  • 5. Raviraj VSC, Sen PC. Comparative study of proportional-integral, sliding mode, and fuzzy logic controllers for power converters. IEEE Transactions on Industry Applications 1997; 33(2): 518-24. https://doi.org/10.1109/28.568018.
  • 6. Pei X, Nie S, Kang Y. Switch short-circuit fault diagnosis and remedial strategy for full-bridge DC-DC converters. IEEE Transactions on Power Electronics 2015; 30(2): 996-1004. https://doi.org/10.1109/TPEL.2014.2310201.
  • 7. Yahyaoui R, De Bernardinis A, Gaillard A, Hissel D. Switch short-circuit fault detection algorithm based on drain-to-source voltage monitoring for a fault tolerant DC/DC converter. IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society 2016; 2212-7. https://doi.org/10.1109/IECON.2016.7793949.
  • 8. Kumar GK, Elangovan D. Review on fault‐diagnosis and fault‐tolerance for DC-DC converters. IET Power Electronics 2020; 13(1): 1-13. https://doi.org/10.1049/iet-pel.2019.0672.
  • 9. Bento F, Cardoso AJM. A comprehensive survey on fault diagnosis and fault tolerance of DC-DC converters. Chinese Journal of Electrical Engineering 2018; 4(3): 1-12. https://doi.org/10.23919/CJEE.2018.8471284.
  • 10. Givi H, Farjah E, Ghanbari T. Switch and diode fault diagnosis in nonisolated DC–DC converters using diode voltage signature. IEEE Transactions on Industrial Electronics 2018; 65(2): 1606-15. https://doi.org/10.1109/TIE.2017.2733486.
  • 11. Jamshidpour E, Poure P, Saadate S. Common switch fault diagnosis for two-stage DC-DC converters used in energy harvesting applications. Electronics 2019;8(3):293. https://doi.org/10.3390/electronics8030293.
  • 12. Jamshidpour E, Poure P, Saadate S. Photovoltaic systems reliability improvement by real-time FPGAbased switch failure diagnosis and fault-tolerant DC-DC converter. IEEE Transactions on Industrial Electronics 2015; 62(11): 7247-55. https://doi.org/10.1109/TIE.2015.2421880.
  • 13. Chen Y, Nie S, Pei X, Kang Y. State monitoring and fault diagnosis of the PWM converter using the magnetic field near the inductor components. 2010 IEEE Energy Conversion Congress and Exposition 2010; 1901-7. https://doi.org/10.1109/ECCE.2010.5618317.
  • 14. Chen Y, Pei X, Nie S, Kang Y. Monitoring and diagnosis for the DC–DC converter using the magnetic near field waveform. IEEE Transactions on Industrial Electronics 2011; 58(5): 1634-47. https://doi.org/10.1109/TIE.2010.2051939.
  • 15. Jamshidpour E, Poure P, Gholipour E, Saadate S. Single-Switch DC-DC converter with fault-tolerant capability under open- and short-circuit switch failures. IEEE Transactions on Power Electronics 2015; 30(5): 2703-12. https://doi.org/10.1109/TPEL.2014.2342878.
  • 16. Jamshidpour E, Poure P, Saadate S. Switch failure diagnosis based on inductor current observation for boost converters. International Journal of Electronics 2016:1-12. https://doi.org/10.1080/00207217.2016.1138243.
  • 17. Espinoza Trejo DR, Taheri S, Pecina Sánchez JA. Switch fault diagnosis for boost DC-DC converters in photovoltaic MPPT systems by using high‐gain observers. IET Power Electronics 2019; 12(11): 2793-801. https://doi.org/10.1049/iet-pel.2018.6287.
  • 18. Xu L, Ma R, Xie R, Xu J, Huangfu Y, Gao F. Opencircuit switch fault diagnosis and fault- tolerant control for output-series interleaved boost DC-DC converter. IEEE Transactions on Transportation Electrification 2021; 7(4): 2054-66. https://doi.org/10.1109/TTE.2021.3083811.
  • 19. Reyes-Cruz D, Martinez-Rodriguez PR, LangaricaCordoba D, Vazquez-Guzman G, Sosa-Zuñiga JM, Ramirez-Rivera VM. Control strategies and experimental validation for high-gain non-isolated double inductor boost converter. Engineering Science and Technology, an International Journal 2023; 37: 101294. https://doi.org/10.1016/j.jestch.2022.101294.
  • 20. Guldemir H. Sliding Mode Control of Dc-Dc Boost Converter. Journal of Applied Sciences 2005; 5(3): 588-92. https://doi.org/10.3923/jas.2005.588.592.
  • 21. Sun J. Pulse-Width modulation. Dynamics and CONTROL OF SWITCHED ELECTRONIC SYSTEMS 2012; 25-61. https://doi.org/10.1007/978-1-4471-2885-4_2.
  • 22. Taniguchi K, Ogino Y, Irie H. PWM technique for power MOSFET inverter. IEEE Transactions on Power Electronics 1988; 3(3): 328-34. https://doi.org/10.1109/63.17951.
  • 23. Hussein AI, Shigdar B, Almatrafi L, Alaidroos B, Alsharif F, Aly RHM. Design of a DC/DC converter with a PID controller and backpropagation neural network for electric vehicles. 2023 20th Learning and Technology Conference (L&T) 2023; 128-33. https://doi.org/10.1109/LT58159.2023.10092291.
  • 24. Dave MR. Analysis of boost converter using PI control algorithms. 2012.
  • 25. Tan SC, Lai YM, Tse CK. Implementation of pulsewidth-modulation based sliding mode controller for boost converters. IEEE Power Electronics Letters 2005; 3(4): 130-5. https://doi.org/10.1109/LPEL.2005.863269.
  • 26. Hongmei Li, Xiao Ye. Sliding-mode PID control of DC-DC converter. 2010 5th IEEE Conference on Industrial Electronics and Applications 2010; 730-4. https://doi.org/10.1109/ICIEA.2010.5516952.
  • 27. Komurcugil H, Biricik S, Bayhan S, Zhang Z. Sliding mode control: Overview of its applications in power converters. IEEE Industrial Electronics Magazine 2021; 15(1): 40-9. https://doi.org/10.1109/MIE.2020.2986165.
  • 28. Wu L, Liu J, Vazquez S, Mazumder SK. Sliding mode control in power converters and drives: A Review. IEEE/CAA Journal of Automatica Sinica 2022; 9(3): 392-406. https://doi.org/10.1109/JAS.2021.1004380.
  • 29. Chen L, Zhao X, Tang SX. Online fault diagnosis method for high-performance converters using inductor voltage polar signatures. IEEE Access 2020; 8: 179778-88. https://doi.org/10.1109/ACCESS.2020.3024549.
  • 30. Abderrezak A, Madjid K. Sensor fault detection, localization, and system reconfiguration with a sliding mode observer and adaptive threshold of PMSM. Journal of Power Electronics 2016; 16(3): 1012-24. https://doi.org/10.6113/JPE.2016.16.3.1012.
  • 31. Aktas M, Aygun H. Comparison of DC link current and stator phase current in inverter switching faults detection of PMSM drives in HEVs. Engineering Science and Technology, an International Journal 2018; 21(4): 664-71. https://doi.org/10.1016/j.jestch.2018.06.002.
  • 32. Han J, Zhang Z, Lai Q, Yin X. Open-circuit fault characteristics and location methods of switch elements for cascaded power electronic transformers. IEEE Transactions on Power Delivery 2022; 37(2): 1017-26. https://doi.org/10.1109/TPWRD.2021.3075487.
  • 33. Bento F, Marques Cardoso AJ. Fault diagnosis in DCDC converters using a time-domain analysis of the reference current error. IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society 2017; 5060-5. https://doi.org/10.1109/IECON.2017.8216874.
  • 34. Rojas F, Jerez C, Hackl CM, Kalmbach O, Pereda J, Lillo J. Faults in modular multilevel cascade converters - Part II: fault tolerance, fault detection and diagnosis, and system reconfiguration. IEEE Open Journal of the Industrial Electronics Society 2022; 3: 594-614. https://doi.org/10.1109/OJIES.2022.3213508.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b64190c-f5d9-419d-b4a7-529c61cf6b8e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.