Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this work, we propose a methodology to estimate the profile of chlorophyll concentration from the upwelling radiation at the ocean surface, using a system of artificial neural networks (ANNs). The input patterns to train the networks are obtained from the resolution of the radiative transfer equation, where the absorption and scattering coefficients are represented by bio-optical models, with the profile of chlorophyll concentrations based on a shifted-Gaussian model. In the performed analysis, we used 14 720 profiles of chlorophyll that were generated by attributing two values to the biomass quantity, and by considering two sets of wavelengths and three sets containing the directions in which the radiation emitted at the surface is measured. To be able to recover the chlorophyll profile, we need to use a system of networks that works in a “cascade mode”. The first one performs an analysis on the features of the chlorophyll profile from the upwelling radiation and determines which profiles can be recovered. The second and third ANNs act only on those profiles that can be recovered. The second ANN performs estimation of the standard deviation from the upwelling radiation and the chlorophyll concentration at the surface. Finally, the third ANN performs an estimation of the peak depth from the upwelling radiation, the chlorophyll concentration at the surface and the standard deviation estimated by second network. The stopping criteria we adopted was the cross-validation process. The obtained results show that the proposed methodology is quite promising.
Rocznik
Tom
Strony
63--88
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Aeronautical Technology (IEFM/ITA) São José dos Campos, São Paulo, Brazil
autor
- National Institute for Space Research (INPE) São José dos Campos, São Paulo, Brazil
autor
- National Institute for Space Research (INPE) São José dos Campos, São Paulo, Brazil
autor
- National Institute for Space Research (INPE) São José dos Campos, São Paulo, Brazil
Bibliografia
- [1] J.G. Acker. The heritage of SeaWiFS: a retrospective on the CZCS NIMBUS experiment team (NET) program. In: NASA Tech. Memo. 104566, Vol. 21, S.B. Hooker, E.R. Firestone [Eds.], NASA Goddard Space Flight Center, Greenbelt, Maryland, pp. 44, 1994.
- [2] J. Aiken, G.F. Moore, P.M. Holligan. Remote sensing of oceanic biology in relation to global climate change. Journal of Phycology, 28: 579–590, 1992, doi: 101111/j00223646199200579x.
- [3] L.B. Barichello, R.D.M. Garcia, C.E. Siewert. Particular solutions for the discreteordinates method. Journal of Quantitative Spectroscopy & Radiative Transfer, 64: 219–226, 2000.
- [4] E.S. Chalhoub, O método das ordenadas discretas na solu¸cão da equa¸cão de transporte em geometria plana com dependência azimutal. PhD thesis, Universidade de São Paulo (USP), São Paulo, 1997. In Portuguese with abstract in English.
- [5] E.S. Chalhoub. Discrete-ordinates solution for uncoupled multi-wavelength radiative transfer problems. Journal of Quantitative Spectroscopy & Radiative Transfer, 92: 335–349 2005.
- [6] E.S. Chalhoub, H.F. Campos Velho, R.D.M. Garcia, M.T. Vilhena. A comparison of radiances generated by selected methods of solving the radiative-transfer equation. Transport Theory and Statistical Physics, 32(5–7): 473–503, 2003.
- [7] S. Chandrasekhar. Radiative transfer. Dover Publications, New York, 1950.
- [8] E. Chassot, S. Bonhommeau, N.K. Dulvy, F. Mélin, R. Watson, D. Gascuel, O. Le Pape. Global marine primary production constrains fisheries catches. Ecology Letters, 13(4): 495–505, 2010.
- [9] D.K. Clark, J.W. Sherman. Nimbus – 7 coastal zone color scanner: ocean color applications. Marine Technology Society Journal, 20(2): 43–56, 1986.
- [10] F. Dall Cortivo. Estimativa do perfil da concentra¸cão de clorofila em águas naturais com o uso de redes neurais artificiais. Ph.D. thesis in Applied Computing, National Institute for Space Research (INPE), São José dos Campos, 2013. In Portuguese with abstract in English.
- [11] F. Dall Cortivo, E.S. Chalhoub, H.F. Campos Velho. Comparison of two learning strategies for a supervised neural network. In: Proceedings of 1st International Symposium on Uncertainty Quantification and Stochastic Modelling, pp. 366–380, São Paulo, Feb. 2012. CD-ROM.
- [12] F. Dall Cortivo, E.S. Chalhoub, H.F. Campos Velho. A committee of MLP with adaptive slope parameter trained by the quasi-Newton method to solve problems in hydrologic optics. In: Proceedings of International Joint Conference on Neural Networks, pp. 1–8, New York, Jul. 2012. IEEE Press. ISBN 978-1-4673-1409-9, doi: 101109/IJCNN20126252665.
- [13] F. Dall Cortivo, E.S. Chalhoub, H.F. Campos Velho. Estimativa do perfil da concentra¸cão de clorofila em ãguas naturais através de um perceptron de m´ultiplas camadas. Tendências em Matemática Aplicada e Computacional, 13(3): 233–246, 2012, doi: 105540/tema2013.013.030233. In Portuguese with abstract in English.
- [14] J.E. Dennis, J.J. Moré. Quasi-Newton methods motivation and theory. Society for Industrial and Applied Mathematics Review, 19(1): 46–89, 1977.
- [15] R.H. Evans Howard, R. Gordon. Coastal zone color scanner “system calibration”: a retrospective examination. Journal of Geophysical Research: Oceans, 99(C4): 7293–7307, 1994. ISSN 2156-2202, doi: 101029/93JC02151.
- [16] G.C. Feldman, N.A. Kuring, C. Ng, W.E. Esaias, C.R. McClain, J.A. Elrod, N. Maynard, D. Endres, R. Evans, J. Brown, S. Walsh, M. Carle, G. Podesta. Ocean color: availability of the global data set. EOS, 70: 634–641, 1989.
- [17] C.B. Field, M.J. Behrenfeld, J.T. Randerson, P. Falkowski. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281: 237–240, 1998.
- [18] H.R. Gordon, A.Y. Morel. Remote assessment of ocean color for interpretation of satellite visible imagery. A review. In: Lecture notes on coastal and estuarine studies, Springer-Verlag, New York, 1983. ISBN 9783540909231.
- [19] H.R. Gordon, D.K. Clark, J.W. Brown, O.B. Brown, R.H. Evans, W.W. Broenkow. Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparisons between ship determinations and CZCS estimates. Applied Optics, 22(1): 20–36, 1983.
- [20] L. Gross, S. Thiria, R. Frouin, B.G. Mitchell. Artificial neural networks for modeling the transfer function between marine reflectance and phytoplankton pigment concentration. Journal of Geophysical Research, 105(C2): 3483– 3495, 2000.
- [21] S. Haykin. Neural networks. Prentice Hall, 2nd edition, Jul. 1999. ISBN 0132733501.
- [22] L.C. Henyey, J.L. Greenstein. Diffuse radiation in the galaxy. Astrophysical Journal, 93: 70–83, 1941.
- [23] IOCCG Remote sensing of ocean colour in coastal, and other optically-complex, waters. In: Reports of the International Ocean Colour Coordinating Group. IOCCG Report Number 3, Dartmouth Canada 2000. Retrieved from http://www.ioccg.org/reports/report3.pdf.
- [24] T. Kameda, S. Matsumura. Chlorophyll biomass off Sanriku Northwestern Pacific estimated by ocean color and temperature scanner (OCTS) and vertical distribution model. Journal of Oceanography, 54: 509–516, 1998.
- [25] C.M. Lalli, T.R. Parsons. Biological oceanography. Oxford: Pergamon Press Oxford, 1993. [26] M.R. Lewis, J.J. Cullen, T. Platt. Phytoplankton and thermal structure in the upper ocean: consequences of nouniformity in chlorophyll profile. Journal of Geophysical Research, 88(C4): 2565–2570, 1983.
- [27] S. Maritorena, J.E. O’Reilly. OC2v2: Update on the initial operational SeaWiFS chlorophyll a algorithm. In: S.B. Hooker, E.R. Firestone [Eds.], O’Reilly J.E., and 24 Coauthors, 2000: SeaWiFS postlaunch calibration and validation analyses, part 3. NASA Tech. Memo. 2000–206892, Vol. 11, NASA Goddard Space Flight Center, Greenbelt, Maryland, 3–8, 2000.
- [28] C.R. McClain. Review of major CZCS applications: U.S case studies In: V. Barale and P.M. Schlittenhardt, Eds. Ocean Colour, volume 3 of Eurocourses: Remote Sensing, pp. 167–188. Springer Netherlands, Ispra, Italy, 1993. ISBN 978-94-010-4788-3, doi: 101007/978-94-011-1791-3-7.
- [29] W. McCulloch, W. Pitts. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5: 115–133, 1943.
- [30] B. Greg Mitchell. Coastal zone color scanner retrospective. Journal of Geophysical Research: Oceans, 99(C4): 7291–7292, 1994. ISSN 2156-2202, doi: 101029/93JC03259.
- [31] C.D. Mobley. Light and water. Academic Press, California, 1994.
- [32] A.Y. Morel. Light and marine photosynthesis: a spectral model with geochemical and climatological implications. Progress in Oceanography, 26(3): 263–306, 1991.
- [33] A.Y. Morel, L. Prieur. Analysis of variations in ocean color. Limnology and Oceanography, 22(4): 709–722, 1977.
- [34] I. Murtugudde, R.J. Beauchamo, C.R. McClain, M.R. Lewis, A. Busalacchi. Effects of penetrative radiation on the upper tropical ocean circulation. Journal of Climate, 15(5): 470–486, 2002.
- [35] NAG. Fortran library manual. The Numerical Algorithms Group (NAG), Oxford, UK, 1995.
- [36] Project ocean color. NASA OceanColor Web, 2013. Retrieved from http://oceancolor.gsfcnasa.gov/.
- [37] J.E. O’Reilly, S. Maritorena, B.G. Mitchell, D.A. Siegel, K.L. Carder, S.A. Garver, M. Kahru, C. McClain. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(C11), 1998.
- [38] J.E. O’Reilly, S. Maritorena, D.A. Siegel, M.C. O’Brien, D. Toole, B.G. Mitchell, M. Kahru, F.P. Chavez, P. Strutton, G.F. Cota, S.B. Hooker, C.R. McClain, K.L. Carder, F. Muller-Karger, L. Harding, A. Magnuson, D. Phinney, G.F. Moore, J. Aiken, K.R. Arrigo, R. Letelier, M. Culver. Nasa Technical Memorandum 2000– 206892. Technical Report, Maryland, 2000.
- [39] T. Platt, S. Sathyendranath, G.N. White, P. Ravindran. Attenuation of visible light by phytoplankton in a vertically structured ocean: solutions and applications. Journal of Plankton Research, 16(11): 1461–1487, 1994. doi: 101093/plankt/16111461.
- [40] T. Platt, S. Sathyendranath. Oceanic primary production: estimation by remote sensing at local and regional scales. Science, 241(4873): 1613–1620, 1988. doi: 101126/science24148731613.
- [41] A.J. Richardson, M.C. Pfaff, J.G. Field, N.F. Silulwane, F.A. Shillington. Identifying characteristic chlorophyll a profiles in the coastal domain using an artificial neural network. Journal of Plankton Research, 24(12): 1289– 1303, 2002. doi: 101093/plankt/24121289.
- [42] D. Roemmich, J. McGowan. Climatic warming and the decline of zooplankton in California current. Science, 267(5202): 1324–1326, 1995.
- [43] C.L. Sabine, R.A. Feely, N. Gruber, R.M. Key, K. Lee, J.L. Bullister, R. Wanninkhof, C.S. Wong, D.W.R. Wallace, B. Tilbrook, F.J. Millero, T.H. Peng, A. Kozyr, T. Ono, A.F. Rios. The oceanic sink for anthropogenic CO2. Science, 305(5682): 367–371, 2004.
- [44] H. Schiller, R. Doerffer. Neural network for emulation of an inverse model operational derivation of Case II water properties from MERIS data. International Journal of Remote Sensing, 20(9): 1735–1746, 1999. doi: 101080/014311699212443.
- [45] U. Sommer, N. Aberle, K. Lengfellner, A. Lewandowska. The Baltic Sea spring phytoplankton bloom in a changing climate: an experimental approach. Marine Biology, 159: 2479–2490, 2012.
- [46] R.P. Souto. Recuperaçco de perfis verticais de propriedade óticas inerentes a partir da radia¸cão emergente da água Doutorado em computa¸cão aplicada, Instituto Nacional de Pesquisas Espaciais São José dos Campos, 2006. Retrieved from http://mtc-m17.sid.inpe.br/col/sid.inpe.br/MTC-m13@80/2006/06.12.14.30/doc/publicacao.pdf (INPE14195-TDI/1097). In Portugese with abstract in English.
- [47] R.P. Souto, V.C.F. Barbosa, H.F. de Campos Velho, S. Stephany. Determining chlorophyll concentration in offshore sea water from multispectral radiances by using second derivative criterion and ant colony metaheuristic. In: Design and Optimization Symposium IPDO-2007. Miami, USA. Inverse Problems, 1: 341–348, 2007.
- [48] R.P. Souto, H.F. Campos Velho, S. Stephany, M. Kampel. Chlorophyll concentration profiles from in situ radiances by ant colony optimization. Journal of Physics: Conference Series, 124(1): 2008. doi:10.1088/1742- 6596/124/1/012047.
- [49] R.P. Souto, H.F. Campos Velho, F.F. Paes, S. Stephany, P.O.A. Navaux, A.S. Charao, J.K. Vizzotto. Grid computing for multispectral tomographic reconstruction of chlorophyll concentration in ocean water. In: C. Constanda, M.E. Pérez [Eds.], Integral Methods in Science and Engineering, 2: 327–337. Birkhäuser Boston, Boston, 2010. ISBN 978-0-8176-48961, doi: 101007/978-081764897831.
- [50] J. Uitz, H. Claustre, A. Morel, S.B. Hooker. Vertical distribution of phytoplankton communities in open ocean: an assessment based on surface chlorophyll. Journal of Geophysical Research, 111(C8005): 1–23, 2006. doi: 101029/2005JC00327.
- [51] J.A. Yoder, W.E. Esaias, G.C. Feldman, C.R. McClain. Satellite ocean colorstatus report. Oceanography, 1(1): 18–20, 1988.
- [52] J.A. Yoder, C.R. McClain, G.C. Feldman, W.E. Esaias. Annual cycles of phytoplankton chlorophyll concentrations in the global ocean: a satellite view. Global Biogeochemical Cycles, 7(1): 181–193, 1993. ISSN 1944-9224, doi: 101029/93GB02358.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b605a11-81f4-4164-87aa-0733269de100