PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Deposition Characteristics of High-Thermal-Conductivity Steel in the Direct Energy Deposition Process and its Hardness Properties at High Temperatures

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Direct energy deposition (DED) is a three-dimensional (3D) deposition technique that uses metallic powder; it is a multi-bead, multi-layered deposition technique. This study investigates the dependence of the defects of the 3D deposition and the process parameters of the DED technique as well as deposition characteristics and the hardness properties of the deposited material. In this study, high-thermal-conductivity steel (HTCS-150) was deposited onto a JIS SKD61 substrate. In single bead deposition experiments, the height and width of the single bead became bigger with increasing the laser power. The powder feeding rate affected only the height, which increased as the powder feeding rate rose. The scanning speed inversely affected the height, unlike the powder feeding rate. The multi-layered deposition was characterized by pores, a lack of fusion, pores formed by evaporated gas, and pores formed by non-molten metal inside the deposited material. The porosity was quantitatively measured in cross-sectionsof the depositions, revealing that the lack of fusion tended to increase as the laser power decreased; however, the powder feeding rate and overlap width increased. The pores formed by evaporated gas and non-molten metal tended to increase with rising the laser power and powder feeding rate; however, the overlap width decreased. Finally, measurement of the hardness of the deposited material at 25°C, 300°C, and 600°C revealed that it had a higher hardness than the conventional annealed SKD61.
Słowa kluczowe
Twórcy
  • Chonnam National University, Department of Mechanical Engineering, Gwangju, Republic of Korea
  • Korea Institute of Industrial Technology, Smart Manufacturing Process Group, Gwangju, Republic of Korea
  • Korea Institute of Industrial Technology, Smart Manufacturing Process Group, Gwangju, Republic of Korea
autor
  • Korea Institute of Industrial Technology, Smart Manufacturing Process Group, Gwangju, Republic of Korea
autor
  • Chonnam National University, Department of Mechanical Engineering, Gwangju, Republic of Korea
autor
  • Korea Maritime and Ocean University, Division of Mechanical Engineering, Busan, Republic of Korea
Bibliografia
  • [1] Y. K. Won, Future trend of 3D printing in the center of manufacturing revolution, 3D printing guide 3, 23 (2017).
  • [2] M. F. Schneider, Laser cladding with powder, Print Partners Ipskamp (1998).
  • [3] J. Y. Son, H. Y. Yoon, KY. Lee, S. H. Park, D. S. Shim, Investigation into high-Temperature interfacial strength of heat-Resisting alloy deposited by laser melting process, Met. Mater. Int. 1-11 (2019).
  • [4] T. Mukherjee, T. DebRoy, Mitigation of lack of fusion defects in powder bed fusion additive manufacturing, Journal of Manufacturing Processes 36, 442-449 (2018).
Uwagi
EN
1. This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) under grant number 2018201010633B.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b5d8b03-01c0-4863-aa24-95d004d5a7c8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.