PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Plane strain deformation in a thermoelastic microelongated solid with internal heat source

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this paper is to study the two dimensional deformation due to an internal heat source in a thermoelastic microelongated solid. A mechanical force is applied along an overlaying elastic layer of thickness h. The normal mode analysis has been applied to obtain the exact expressions for the displacement component, force stress, temperature distribution and microelongation. The effect of the internal heat source on the displacement component, force stress, temperature distribution and microelongation has been depicted graphically for Green-Lindsay (GL) theory of thermoelasticity.
Rocznik
Strony
717--731
Opis fizyczny
Bibliogr. 37 poz., wykr.
Twórcy
autor
  • Department of Applied Sciences and Humanities, M.M. University, Sadopur, Ambala City, Haryana, INDIA
  • Department of Applied Sciences, D.A.V Institute of Engineering and Technology, Jalandhar, Punjab, INDIA
  • Department of Applied Sciences, Guru Nanak Dev Ji Engineering College, Ludhiana, Punjab, INDIA
Bibliografia
  • [1] Aouadi M. (2006): Thermomechanical interactions in a generalized thermo-microstrech elastic half-space. – Journal of Thermal Stresses, vol.29, pp.511-528.
  • [2] Barber J.R. (1984): Thermoelastic displacements and stresses due to a heat source moving over the surface of a half plane. – ASME, Transactions, - Journal of Applied Mechanics, vol.51, pp.636-640.
  • [3] Bullen K.E. (1963): An introduction to theory of seismology. – Cambridge: Cambridge University Press.
  • [4] Chandrasekharaiah D.S. and Srinath K.S. (1998): Thermoelastic interactions without energy dissipation due to a point heat source. – Journal of Elasticity, vol.50, pp.97-108.
  • [5] De Cicco S. and Nappa L. (1999): On the theory of thermomicrostretch elastic solids. – Journal of Thermal Stresses, vol.22, pp.565–580.
  • [6] Deswal S. and Choudhary S. (2008): Two-dimensional interactions due to moving load in generalized thermoelastic solid with diffusion. – Applied Mathematics and Mechanics, vol.29, No.2, pp.207-221.
  • [7] Dhaliwal R.S. and Singh A. (1987): Micropolar thermoelasticity, Chapter 5, in R.B. Hetnarski(ed.), Thermal Stresses II, Mechanical and Mathematical Methods, ser. 2, North-Holland, Amsterdam.
  • [8] Dhaliwal R.S., Majumdar S.R. and Wang J. (1997): Thermoelastic waves in an infinite solid caused by a line heat source. – International Journal of Mathematics and Mathematical Sciences, vol.20, No.2, pp.323-334.
  • [9] El. Maghraby N.M. (2010): A generalized thermoelasticity problem for a halfspace with heat sources and body forces. – International Journal of Thermophysics, vol.31, pp.648-662.
  • [10] Eringen A.C. (1965): Linear theory of micropolar elasticity. – ONR Techanical report No. 29, School of Aeronautics, Aeronautics and Engineering Science, Purdue University.
  • [11] Eringen A.C. (1966): A unified theory of thermomechanical materials. – International Journal of Engineering Science, vol.4, pp.179-202.
  • [12] Eringen A.C. (1970): Foundation of micropolar thermoelasticity. – Courses and Lectures, No.23, CISM, Udine, Springer-Verlag, Vienna and New York.
  • [13] Eringen A.C. (1971): Micropolar elastic solids with strech. – Ari Kitabevi Matbassi, vol.24, pp.1-18.
  • [14] Eringen A.C. (1996): Linear theory of micropolar elasticity. – Journal of Mathematics and Mechanics, vol.15, pp.909-923.
  • [15] Eringen A.C. (1999): Microcontinuum Field Theories. – Vol.1, Foundations and Solids, Springer Verlag, New York.
  • [16] Eringen A.C. and Suhubi E.S. (1964): Nonlinear theory of simple micro-elastic solids I. – International Journal of Engineering Science, vol.2, pp.189-203.
  • [17] Eringen A.C. and Kafadar C.B. (1976): In Eringen A.C. (ed.), Continum Physics, Vol. 4, Academic Press, New York.
  • [18] Ewing W.M., Jardetzky W.S. and Press F. (1957): Elastic waves in layered media. – New York: McGraw Hill.
  • [19] Green A.E. and Laws N. (1972a): On the entropy production inequality. – Archives of Rational Mechanics and Analysis, vol.45, pp.45-47.
  • [20] Green A.E. and Lindsay K.A. (1972b): Thermoelasticity. – Journal of Elasticity, vol.2, pp.1-7.
  • [21] Kiris A. and Inan E. (2007): 3-D vibration analysis of the rectangular microdamaged plates. – In Proc. 8th International Conference on Vibration Problems (ICOVP), India, pp.207–214.
  • [22] Lord H.W. and Shulman Y. (1967): A generalized dynamical theory of thermo-elasticity. – Journal of the Mechanics and Physics of Solids, vol.15, pp.299-306.
  • [23] Muller I.M. (1971):The coldness, universal function in thermoelastic bodies. – Rational Mechanics Analysis, vol.41, pp.319-332.
  • [24] Nowacki W. (1966): Couple stresses in the theory of thermoelasticity III. – Bulletin of the Polish Academy of Sciences Techanical Sciences, vol.8, pp.801-809.
  • [25] Nowacki W. and Olszak W. (1974): Micropolar thermoelasticity. – In W. Nowacki and Olszak (eds.), Micropolar Thermoelasticity, CISM Courses and Lectures, No.151, Udine, Springer-Verlag, Vienna.
  • [26] Sarbani C. and Amitava C. (2004): Transient disturbance in a relaxing thermoelastic half-space due to moving internal heat source. – International Journal of Mathematics and Mathematical Sciences, vol.22, pp.595-602.
  • [27] Sharma J.N. Chauhan R.S. and Kumar R. (2000): Time-harmonic sources in a generalized thermoelastic continuum. – Journal of Thermal Stresses, vol.23, No.7, pp.657-674.
  • [28] Sharma J.N. and Chauhan R.S. (2001): Mechanical and thermal sources in a generalized thermoelastic half-space. – Journal of Thermal Stresses, vol.24, No.7, pp.651-675.
  • [29] Sharma J.N., Sharma P.K. and Gupta S.K. (2004): Steady state response to moving loads in thermoelastic solid media. – Journal of Thermal Stresses, vol.27, No.10, pp.931-951.
  • [30] Shaw S. and Mukhopadhyay B. (2012): Periodically varying heat source response in a functionally graded microelongated medium. – Applied Mathematics and Computation, vol.128, No.11, pp.6304-6313.
  • [31] Shaw S. and Mukhopadhyay B. (2013): Moving heat source response in a thermo elastic microelongated solid. – Journal of Engineering Physics and Thermophysics, vol.86, No.3, pp.716-722.
  • [32] Sherief H.H. (1986): Fundamental solution of the generalized thermoelastic problem for short times. – Journal of Thermal Stresses, vol.9, No.2, pp.151-164.
  • [33] Suhubi E.S. and Eringen A.C. (1964): Nonlinear theory of micro-elastic II. – International Journal of Engineering Science, vol.2, pp.389-404.
  • [34] Suhubi E.S. (1975): Thermoelastic Solids in Continuum Physics. – New York.
  • [35] Tauchert T.R. (1971): Thermal stresses in micropolar elastic solids. – Acta Mechanica, vol.11, pp.155-169.
  • [36] Tauchert T.R., Claus Jr. W.D. and Ariman T. (1968): The linear theory of micropolar thermo-elasticity. – International Journal of Engineering Science, vol.6, pp.36-47.
  • [37] Youssef H.M. (2010): Generalized thermoelastic infinite medium with spherical cavity subjected to moving heat source. – Computers Mathematical Modelling, vol.21, No.2, pp.211–225.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b5d81a7-2fab-4010-9079-fe5523f002e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.