Identyfikatory
Warianty tytułu
Wpływ warstwy kontaktu na proces odlewania ciągłego cienkich prętów metalowych
Języki publikacji
Abstrakty
An analytical heat transfer model has been development and applied for calculating the shape of the solid thickness profile for continuous casting of thin metal rods. The stationary solidification front relative to the crystallizer was received from superposition of the motions of the liquid metal flow in the axial direction and the solidifying metal in the radial direction. The shape of the solidified crust depends on several parameters. The influence of the contact layer between the frozen crust and the internal surface of a crystallizer on the solidification process is also studied. The results are presented as an analytical model and are graphically shown for different selected parameters.
W pracy bada się analitycznie i oblicza się kształty frontów krzepnięcia przy odlewaniu ciągłym cienkich metalowych prętów. Określono stacjonarny front krzepnięcia względem krystalizatora przez superpozycję dwóch ruchów: przepły wu ciekłego metalu w kierunku pionowym i rozprzestrzenianie się frontu krzepnięcia w kierunku promieniowym. Szczególną uwagę zwrócono na opór cieplny warstwy kontaktu między metalem i powiercznią wewnętrzną krystalizatora. Wykazano zależność kształtu frontu krzepnięcia od parametrów termodynamicznych i przepływowych metalu. Wyniki badań wybranych metali przedstawiono w formie graficznej.
Wydawca
Czasopismo
Rocznik
Tom
Strony
167--172
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Institute of Environmental Engineering, University of Zielona Góra, 65-516 Zielona Góra, Poland
autor
- The State Higher Vocation School in Głogów, 67-200 Głogów, Poland
autor
- Institut fur Thermodynamik der Luft- und Raumfahrt, Universitat Stuttgart, Pfaffenwaldring 31, 70569 Stuttgart, Germany
Bibliografia
- [1] R. Grzymkowski, B. Mochnacki, Analiza krzepniecia wlewkawprocesie ciagłego odlewania stali, Krzepniecie metaliistopów 2, 69-125 (1980).
- [2] B. Mochnacki, Application of the BEMfor numerical modeling of continuous casting, Computational Mechanics 18, Springer-Verlag, 62-71 (1996).
- [3] A. K. Tieu, I. S. Kim, Simulation of the continuous casting process by mathematical model, Int. J. Mech. Sci. 39, 2, 185-192 (1997).
- [4] E. Majchrzak, B. Mochnacki, M. Dziewoński, M. Jasiński, Identification of boundary heat flux on the continuous casting surface, Archives of Foundary Engineering 8, 105-110 (2008).
- [5] T. Telejko, Z. Malinowski, M. Rywotycki, Analysis of heat transfer and fluid flow in continuous steel casting. Archives of Metallurgy and Materials 54, 837-844 (2009).
- [6] L. Sowa, A. Bokota, Numerical model of thermal and flow phenomena the process growing of the CCslab, Archives of metallurgy and materials 56, 359-366 (2011).
- [7] M. Rywotycki, K. Miłkowska-Piszczek, L. Trebacz, Identification of the boundary conditions in the continuous casting of steel. Archives of Metallurgy and Materials 57, 385-393 (2012).
- [8] J. S. Walker, E. Georgopoulos, Slow solidification ofacylinder with constant heat efflux, Int. Comm. Heat Mass Transfer 11, 45-53 (1984).
- [9] T. Loulou, E. A. Artyukhin, J. P. Bardon, Solidification of molten tin drop onanickel substrate, 10th Int. Heat Transfer Conference, Brighton, UK 4, 73-78 (1998).
- [10] T. Loulou, J. P. Artyukhin, J. P. Bardon, Estimation of thermal contact resistance during the first stages of metal solidification process: I - experiment principle and modelisation, Int. J. Heat and Mass Transfer 42, 2119-2127 (1999).
- [11] T. Loulou, J.P. Artyukhin, J. P. Bardon, Estimation of thermal contact resistance during the first stages of metal solidification process: II - experimental setup and results, Int. J. Heat and Mass Transfer 42, 2129-2142 (1999).
- [12] Z. Lipnicki, Role of the contact layer between liquid and solid on solidification process, Int. J. Heat and Mass Transfer 46, 2149-2154 (2003).
- [13] Z. Lipnicki, B. Weigand, A. Bydałek, On the effect ofavariable thermal contact resistance on the solidification process, Archives of Metallurgy and Materials 50, 1055-1064 (2005).
- [14] Z. Lipnicki, B. Weigand, Influence of thermal boundary layer on the contact layer betweenaliquid andacold plate inasolidification process, Heat and Mass Transfer 47, 1629-1635 (2011).
- [15] Z. Lipnicki, B. Weigand, An experimental and theoretical study of solidification inafree-convection flow inside a vertical annular channel, Int. J. Heat and Mass Transfer 55, 655-664 (2012).
- [16] S. Fukusako, M. Yamada, Solidification of pure liquids and mixtures inside ducts and over external bodies. Applied Mechanics 47, 12, 1, 588-621 (1994).
- [17] R. W. Powell, C. Y. Ho, P. E. Liley, Thermal Conductivity of Selected Materials, NSRDS-NBS8, Report- National Standard Reference Data Series National Bureau of Standards, Issued November 25 (1966).
- [18] M. V. Peralta-Martinez, W. A. Wakeham, Thermal Conductivity of Liquid Tin and Indium International Journal of Thermophysics 22, 2, 398 (2001).
- [19] A. A. Mahasneh, A. M. Al-Qararah, S. M. A. Al-Qawabah, Solution of Heat Conduction Equation for a Homogenous Solid Silver Sphere using Homotopy Perturbation Theory, European Journal of Scientific Research ISSN 1450-216X 42, 3, 351-358 (2010).
- [20] H. Shibata, K. Okubo, H. Ohta, Y. Waseda, Anovel laser flash method for measuring thermal diffusivity of molten metals/ Journal of Non-Crystalline Solids 312-314, 172-176 (2002).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b5bc758-ca2d-4cb9-b3d3-ecd3e90a3176