PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fault type and fault location detection in transmission lines with 6-convolutional layered CNN

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we propose a data-driven method for short-circuit fault detection in transmission lines that exploits the capabilities of convolutional neural networks (CNNs). CNNs, a class of deep feedforward neural networks, can autonomously detect different features from data, eliminating the need for manual intervention. To mitigate the effects of noise and increase network robustness, we present a CNN architecture with six convolutional layers. The study uses a single busbar power system model developed with the PSCAD simulation program to evaluate the performance of the proposed method. The proposed CNN method is also compared with machine learning methods such as LSTM, SVM and ELM. Our results show a high success rate of 98.4% across all fault impedances, confirming the effectiveness of the proposed CNN methods in accurately detecting short-circuit faults based on current and voltage measurements.
Rocznik
Strony
art. no. e151047
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Electrical and Electronics Engineering Department, Faculty of Engineering, Dicle University, Diyarbakır 21280, Turkey
  • Electric Power and Energy Department, Dicle University, Diyarbakır 21280, Turkey
  • Electrical and Electronics Engineering Department, Faculty of Engineering, Dicle University, Diyarbakır 21280, Turkey
  • SCADA System and DMS Manager, Dicle Electricity Distribution Inc., Diyarbakır, Turkey
Bibliografia
  • [1] Y.M. Nsaif, M.S.H. Lipu, A. Ayob, Y. Yusof, and A. Hussain, “Fault detection and protection schemes for distributed generation integrated to distribution network: Challenges and suggestions,” IEEE Access, vol. 9, pp. 142 693–142 717, 2021, doi: 10.1109/ACCESS.2021.3121087.
  • [2] A. Silos-Sanchez, R. Villafafila-Robles, and P. Lloret-Gallego, “Novel fault location algorithm for meshed distribution networks with ders,” Electr. Power Syst. Res., vol. 181, p. 106182, 2020.
  • [3] H. Kilic, B. Gumus, and M. Yilmaz, “Fault detection in photovoltaic arrays: a robust regularized machine learning approach.” DYNA-Ingeniería e Industria, vol. 95, no. 6, pp. 622–628, 2020, doi: 10.6036/9856.
  • [4] Council of European Energy Regulators, “2nd ceer report on power losses,” 2020. [Online]. Available: https://www.ceer.eu/documents/104400/-/-/fd4178b4-ed00-6d06-5f4b-8b87d630b060
  • [5] S.A. Aleem, N. Shahid, and I.H. Naqvi, “Methodologies in power systems fault detection and diagnosis,” Energy Syst., vol. 6, pp. 85–108, 2015.
  • [6] Y.Q. Chen, O. Fink, and G. Sansavini, “Combined fault location and classification for power transmission lines fault diagnosis with integrated feature extraction,” IEEE Trans. Ind. Electron., vol. 65, no. 1, pp. 561–569, 2018, doi: 10.1109/TIE.2017.2721922.
  • [7] S. Gururajapathy, H. Mokhlis, and H. Illias, “Fault location and detection techniques in power distribution systems with distributed generation: A review,” Renew. Sust. Energ. Rev., vol. 74, pp. 949–958, 2017.
  • [8] C. Haydaroğlu and B. Gümüş, “Fault detection in distribution network with the Cauchy-M estimate – RVFLN method,” Energies, vol. 16, no. 1, 2023.
  • [9] H. Haes Alhelou, M. E. Hamedani-Golshan, T.C. Njenda, and P. Siano, “A survey on power system blackout and cascading events: Research motivations and challenges,” Energies, vol. 12, no. 4, p. 682, 2019, doi: 10.3390/en12040682.
  • [10] “Analytical frameworks for electricity security,” International Energy Agency, Tech. Rep., 2021. [Online]. Available: https://www.iea.org/reports/analytical-frameworks-for-electricity-security
  • [11] R. Godse and S. Bhat, “Mathematical morphology-based feature-extraction technique for detection and classification of faults on power transmission line,” IEEE Access, vol. 8, pp. 38 459–38 471, 2020, doi: 10.1109/ACCESS.2020.2975431.
  • [12] P. Gopakumar and D.K. Mohanta, “Adaptive fault identification and classification methodology for smart power grids using synchronous phasor angle measurements,” IET Gener. Transm. Distrib., vol. 9, pp. 133–145, 2015.
  • [13] P.K. Dash, S. Das, and J. Moirangthem, “Distance protection of shunt compensated transmission line using a sparse s-transform,” IET Gener. Transm. Distrib., vol. 9, pp. 1264–1274, 2015.
  • [14] S.N. Ananthan, R. Padmanabhan, R. Meyur, B. Mallikarjuna, M.J.B. Reddy, and D.K. Mohanta, “Real-time fault analysis of transmission lines using wavelet multi-resolution analysis based frequency-domain approach,” IET Sci. Meas. Technol., vol. 10, pp. 693–703, 2016.
  • [15] B. Rathore and A.G. Shaik, “Wavelet-alienation based transmission line protection scheme,” IET Gener. Transm. Distrib., vol. 11, pp. 995–1003, 2017.
  • [16] M. Salehi and F. Namdari, “Fault classification and faulted phase selection for transmission line using morphological edge detection filter,” IET Gener. Transm. Distrib., vol. 12, pp. 1595–1605, 2018.
  • [17] S. Ranjbar and S. Jamali, “Fault detection in microgrids using combined classification algorithms and feature selection methods,” in 2019 International Conference on Protection and Automation of Power System (IPAPS), 2019, pp. 17–21, doi: 10.1109/IPAPS.2019.8641871.
  • [18] A. Malhotra, O. P. Mahela, and H. Doraya, “Detection and classification of power system faults using discrete wavelet transform and rule based decision tree,” in 2018 International Conference on Computing, Power and Communication Technologies (GU-CON), 2018, pp. 142–147, doi: 10.1109/GUCON.2018.8674922.
  • [19] A. Swetapadma and A. Yadav, “A novel decision tree regression-based fault distance estimation scheme for transmission lines,” IEEE Trans. Power Deliv., vol. 32, no. 1, pp. 234–245, 2017, doi: 10.1109/TPWRD.2016.2598553.
  • [20] A. Yadav and Y. Dash, “An overview of transmission line protection by artificial neural network: Fault detection, fault classification, fault location, and fault direction discrimination,” Adv. Artif. Neural Syst., 2014, doi: 10.1155/2014/230382.
  • [21] M. Jamil, K.S. Sharma, and R. Singh, SpringerPlus, vol. 4, p. 334.
  • [22] P. Ray and D.P. Mishra, “Support vector machine based fault classification and location of a long transmission line,” Eng. Sci. Technol. Int. J., vol. 19, no. 3, pp. 1368–1380, 2016.
  • [23] A.A. Majd, H. Samet, and T. Ghanbari, “k-nn based fault detection and classification methods for power transmission systems,” Prot. Control Mod. Power Syst., vol. 2, p. 32, 2017, doi: 10.1186/s41601-017-0063-z.
  • [24] M.H. Hairi, M.N. Kamarudin, A.S.M. Isira, M.F.P. Mohamed, and S.A. Sobri, “Modeling an overcurrent relay protection and coordination in a power system network using pscad software,” Int. J. Electr.l Eng. Appl. Sci., vol. 4, no. 1, 2021. [Online]. Available: https://ijeeas.utem.edu.my/ijeeas/article/view/4153
  • [25] M. Singh, B. Panigrahi, and R.P. Maheshwari, “Transmission line fault detection and classification,” in 2011 International Conference on Emerging Trends in Electrical and Computer Technology, 2011, pp. 15–22, doi: 10.1109/ICETECT.2011.5760084.
  • [26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324, 1998, doi: 10.1109/5.726791.
  • [27] Y. LeCun, B.E. Boser, J.S. Denker, D. Henderson, R.E. Howard, W.E. Hubbard, and L.D. Jackel, “Handwritten digit recognition with a back-propagation network,” in NIPS, 1989.
  • [28] A. Krizhevsky, I. Sutskever, and G.E. Hinton, “Imagenet classification with deep convolutional neural networks,” in Advances in Neural Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.
  • [29] F. Murat, O. Yildirim, M. Talo, U.B. Baloglu, Y. Demir, and U.R. Acharya, “Application of deep learning techniques for heartbeats detection using ecg signals-analysis and review,” Comput. Biol. Med., vol. 120, p. 103726, 2020, doi: 10.1016/j.compbiomed.2020.103726.
  • [30] S.-Y. Park, G.-W. Kim, J.-S. Jeong, and H.-S. Choi, “The modeling of the LC divergence oscillation circuit of a superconducting dc circuit breaker using pscad/emtdc,” Energies, vol. 15, no. 3, p. 780, 2022, doi: 10.3390/en15030780.
  • [31] A.L. Nascimento, I. Yahyaoui, J.F. Fardin, L.F. Encarnação, and F. Tadeo, “Modeling and experimental validation of a pem fuel cell in steady and transient regimes using pscad/emtdc software,” Int. J. Hydrog. Energy, vol. 45, no. 55, pp. 30 870–30 881, 2020, doi: 10.1016/j.ijhydene.2020.04.184.
  • [32] K. Chen, J. Hu, and J. He, “Detection and classification of transmission line faults based on unsupervised feature learning and convolutional sparse autoencoder,” IEEE Trans. Smart Grid, vol. 9, pp. 1748–1758, 2017.
  • [33] M. Coban and S.S. Tezcan, “Detection and classification of short-circuit faults on a transmission line using current signal,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 4, p. e137630, 2021, doi: 10.24425/bpasts.2021.137630.
  • [34] S. Fuada, H. Shiddieqy, and T. Adiono, “A high-accuracy of transmission line faults (TLFs) classification based on convolutional neural network,” Int. J. Electron. Telecommun., vol. 66, no. 4, pp. 655–664, 2020, doi: 10.24425/ijet.2020.134024.
  • [35] A.K. Gangwar, O.P. Mahela, B. Rathore, B. Khan, H.H. Alhelou, and P. Siano, “A novel 𝑘-means clustering and weighted 𝑘-nn-regression-based fast transmission line protection,” IEEE Trans. Ind. Inform., vol. 17, no. 9, pp. 6034–6043, 2021, doi: 10.1109/TII.2020.3037869.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b5a9e56-5ffa-44ca-a477-115b75fc1436
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.