PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilization of the cyclic interferometer in polarization phase-shifting technique to determine the thickness of transparent thin-films

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An alternative polarization phase-shifting technique is proposed to determine the thickness of transparent thin-films. In this study, the cyclic interferometric configuration is chosen to maintain the stability of the operation against external vibrations. The incident light is simply split by a non-polarizing beam splitter cube to generate test and reference beams, which are subsequently polarized by a polarizing beam splitter. Both linearly polarized beams are orthogonal and counter-propagating within the interferometer. A wave plate is inserted into the common paths to introduce an intrinsic phase difference between the orthogonal polarized beams. A transparent thin-film sample, placed in one of the beam tracks, modifies the output signal in terms of the phase retardation in comparison with the reference beam. The proposed phase-shifting technique uses a moving mirror with a set of “fixed” polarizing elements, namely, a quarter-wave retarder and a polarizer, to facilitate phase extraction without rotating any polarizing devices. The measured thicknesses are compared with the measurements of the same films acquired using standard equipment such as the field-emission scanning electron microscope and spectroscopic ellipsometer. Experimental results with the corresponding measured values are in good agreement with commercial measurements. The system can be reliably utilized for non-destructive thickness measurements of transparent thin-films.
Czasopismo
Rocznik
Strony
69--81
Opis fizyczny
Bibliogr. 25 poz., rys., tab.
Twórcy
  • Silpakorn University, Faculty of Engineering and Industrial Technology, Department of Electrical Engineering, 6 Rajamankha Nai Rd, Nakornpathom 73000, Thailand
  • Rajamangala University of Technology Krungthep, Faculty of Science and Technology, Physics Division, 2 Nanlinji Road, Bangkok 10120, Thailand
  • Mahidol University, Faculty of Science, Department of Physics, 272 Rama VI Road, Bangkok 10400, Thailand
  • National Electronics and Computer Technology Center, Optical Thin-Film Laboratory, Pathumthani 12120, Thailand
  • King Mongkut’s University of Technology Thonburi, Faculty of Engineering, Department of Electronic and Telecommunication Engineering, 126 Pracha U-thid Road, Bangkok 10140, Thailand
Bibliografia
  • [1] CHAKRABORTY S., BHATTACHARYA K., Low-level birefringence measurement by cyclic-path polarization interferometer, Applied Optics 55(21), 2016, pp. 5634–5639, DOI:10.1364/AO.55.005634.
  • [2] FLORES MUÑOZ V.H., TOTO-ARELLANO N.I., LÓPEZ-ORTIZ B., MARTÍNEZ GARCÍA A., RODRÍGUEZ-ZURITA G., Measurement of red blood cell characteristic using parallel phase shifting interferometry, Optik 126(24), 2015, pp. 5307–5309, DOI:10.1016/j.ijleo.2015.09.019.
  • [3] KUMAR Y.P., CHATTERJEE S., Thickness measurement of transparent glass plates using a lateral shearing cyclic path optical configuration setup and polarization phase shifting interferometry, Applied Optics 49(33), 2010, pp. 6552–6557, DOI:10.1364/AO.49.006552.
  • [4] ROTHAU S., KELLERMANN C., MAYER S., MANTEL K., LINDLEIN N., Polarization and phase-shifting interferometry for arbitrary, locally varying polarization states, Applied Optics 56(5), 2017, pp. 1422–1430, DOI:10.1364/AO.56.001422.
  • [5] MALACARA D., Phase shifting interferometry, Revista Mexicana de Física 36(1), 1990, pp. 6–22.
  • [6] MENESES-FABIAN C, RIVERA-ORTEGA U., Phase-shifting interferometry by wave amplitude modulation, Optics Letters 36(13), 2011, pp. 2417–2419, DOI:10.1364/OL.36.002417.
  • [7] INDEBETOUW G., KLYSUBUN P., Measurement of induced birefringence in film samples using a balanced polarization ring interferometer, Optics Communications 151(4–6), 1998, pp. 203–206, DOI:10.1016/S0030-4018(98)00087-X.
  • [8] BHADURI B., KRISHNA MOHAN N., KOTHIYAL M.P., Cyclic-path digital speckle shear pattern interferometer: use of polarization phase-shifting method, Optical Engineering 45(10), 2006, article 105604, DOI:10.1117/1.2361194.
  • [9] SHAGAM R.N., WYANT J.C., Optical frequency shifter for heterodyne interferometers using multiple rotating polarization retarders, Applied Optics 17(19), 1978, pp. 3034–3035, DOI:10.1364/AO.17.003034.
  • [10] KOTHIYAL M.P., DELISLE C., Shearing interferometer for phase shifting interferometry with polarization phase shifter, Applied Optics 24(24), 1985, pp. 4439–4442, DOI:10.1364/AO.24.004439.
  • [11] TOTO-ARELLANO N.-I., SERRANO-GARCÍA D.-I., MARTÍNEZ-GARCÍA A., Parallel two-step phase shifting interferometry using a double cyclic shear interferometer, Optics Express 21(26), 2013, pp. 31983–31989, DOI:10.1364/OE.21.031983.
  • [12] ZHANG Z., ZHANG Q., CHENG T., GAO J., WU X., Wave-plate phase shifting method, Optical Engineering 52(10), 2013, article 103109, DOI:10.1117/1.OE.52.10.103109.
  • [13] SUJA HELEN S., KOTHIYAL M.P., SIROHI R.S., Achromatic phase shifting by a rotating polarizer, Optics Communications 154(5–6), 1998, pp. 249–254, DOI:10.1016/S0030-4018(98)00292-2.
  • [14] LECHUGA L.G., TOTO-ARELLANO N.I., FLORES MUÑOZ V.H., MARTÍNEZ-GARCÍA A., ZURITA G.R., Phase shifting interferometry using a coupled cyclic path interferometers, [In] Emerging Challenges for Experimental Mechanics in Energy and Environmental Applications, Proceedings of the 5th International Symposium on Experimental Mechanics and 9th Symposium on Optics in Industry (ISEM-SOI), 2015, Martínez-García A., Furlong C., Barrientos B., Pryputniewicz R. [Eds.], Conference Proceedings of the Society for Experimental Mechanics Series, Springer, Cham, 2017, pp. 65–69, DOI:10.1007/978-3-319-28513-9_9.
  • [15] WANG L., LIU L., LUAN Z., SUN J., ZHOU Y., Polarization phase-shifting Jamin shearing interferometer, Optik 121(4), 2010, pp. 358–361, DOI:10.1016/j.ijleo.2008.07.023.
  • [16] CHAKRABORTY S., BHATTACHARYA K., Real-time edge detection by cyclic-path polarization interferometer, Applied Optics 53(4), 2014, pp. 727–730, DOI:10.1364/AO.53.000727.
  • [17] LIU X., GAO Y., CHANG M., A new lateral shearing interferometer for precision surface measurement, Optics and Lasers in Engineering 47(9), 2009, pp. 926–934, DOI:10.1016/j.optlaseng.2009.03.019.
  • [18] PAWONG C., CHITAREE R., SOANKWAN C., The rotating linearly polarized light from a polarizing Mach–Zehnder interferometer: production and applications, Optics and Laser Technology 43(3), 2011, pp. 461–468, DOI:10.1016/j.optlastec.2010.06.020.
  • [19] KAEWON R., PAWONG C., CHITAREE R., BHATRANAND A., Polarization phase-shifting technique forthe determination of a transparent thin film’s thickness using a modified Sagnac interferometer, Current Optics and Photonics 2(5), 2018, pp. 474–481.
  • [20] TATAM R.P., JONES J.D.C., JACKSON D.A., Optical polarization state control schemes using fibre optics or Bragg cells, Journal of Physics E: Scientific Instruments 19(9), 1986, pp. 711–717, DOI:10.1088/0022-3735/19/9/013.
  • [21] SARKAR S., BHATTACHARYA K., Polarization phase shifting cyclic interferometer for surface profilometry of non-birefringent phase samples, Journal of Modern Optics 60(3), 2013, pp. 185–189, DOI:10.1080/09500340.2013.765051.
  • [22] MANIFACIER J.C., GASIOT J., FILLARD J.P., A simple method for the determination of the optical constants n, k and the thickness of a weakly absorbing thin film, Journal of Physics E: Scientific Instruments 9(11), 1976, pp. 1002–1004, DOI:10.1088/0022-3735/9/11/032.
  • [23] SUN X., LIU Z., CAO H., Effects of film density on electrochromic tungsten oxide thin films depositedby reactive dc-pulsed magnetron sputtering, Journal of Alloys and Compounds 504, 2010, pp. s418–s421, DOI:10.1016/j.jallcom.2010.03.155.
  • [24] ZHAO C., TAN J., TANG J., LIU T., LIU J., Confocal simultaneous phase-shifting interferometry, Applied Optics 50(5), 2011, pp. 655–661, DOI:10.1364/AO.50.000655.
  • [25] FRANKE E., TRIMBLE C.L., DEVRIES M.J., WOOLLAM J.A., SCHUBERT M., FROST F., Dielectric functionof amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry, Journal of Applied Physics 88(9), 2000, pp. 5166–5174, DOI:10.1063/1.1313784.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b5a89bb-894d-44ff-a055-49cbed42211e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.