PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectroscopic investigations of polycrystalline InxSb20−xAg10Se70 (0 6 x 6 15) multicomponent chalcogenides

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The composition dependence of physical properties of chalcogenides has recently been studied for their phase change properties and energy conversion. In the present work, we report the structure, composition, optical and Raman spectroscopy results for bulk polycrystalline InxSb20-xAg10Se70 (0 ≤ × ≤ 15) samples. The phase quantification and composition have been studied by using XRD and EDX techniques. The alloy composition up to 5 at.% of indium resulted in crystallization of AgSbSe2, while further increase in In content favored the formation of another chalcopyrite AgInSe2 phase yielding the solid solutions for this alloy system. A decrease in band gap up to x = 5 followed by its increase with an increase in indium concentration has been observed. The variations in shape and position of characteristic Raman bands has been used for understanding the structural modifications of the network with the variation in indium content.
Słowa kluczowe
Wydawca
Rocznik
Strony
794--799
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005, India
autor
  • Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005, India
autor
  • Department of Physics, DAV University, Sarmastpur, Jalandhar-144012, India
autor
  • Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005, India
autor
  • Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005, India
autor
  • Semiconductors Laboratory, Department of Physics, GND University, Amritsar 143005, India
Bibliografia
  • [1] STUDENTYAK I.P., KUTSYK M.M., BUCHUK M.Y., RATI Y.Y., NEIMET Y.Y., IZAI V.Y., KOKENYESI S., P., Opt. Mater., 52 (2016), 224
  • [2] ELLIOT S.R., Physics of amorphous materials, Longman Publication, London, 1991.
  • [3] FRITZSCHE H., J. Phys. Chem. Solids, 68 (2007), 878.
  • [4] PATTANAYAK P., ASHOKAN S., Euro. Phys. Lett., 75 (2006), 778.
  • [5] HAMANN H.F., BOYLE M.O., MARTIN Y.C., ROOKS M., WICKRAMASINGHE H.K., Nat. Mater., 5 2006), 383.
  • [6] BALITSKA V., SHPOTYUK O., ALTENBURG H., J. Non-Cryst. Solids, 352 (2006), 4809.
  • [7] STRONSKI A., ACHIMOVA E., PAIUK O., MESHALKIN A., ABASHKIN V., LYTVYN O., SERGEEV S., PRISACAR A., TRIDUH G., Nanoscale Res. Lett., 11 (2016), 39.
  • [8] AFIFI M.A., ABD EL-WAHABB E., BEKHEET A.E., ATYIA H.E., J. Mater. Sci., 41 (2006), 7969.
  • [9] ZHENG W.X., XIE Y., ZHU Y.L., JIANG X.C., JIA Y.B., SUN Y.P., Inorg. Chem., 41 (2002), 455.
  • [10] YU Y., WANG R.H., CHEN Q., PENG L., J. Phys. Chem. B, 110 (2006), 13415.
  • [11] ABDEL-RAHIM M.A., HAFIZ M.M., SHAMEKH A.M., Physica B, 369 (2005), 143.
  • [12] SOLIMAN H.S., ABDEL-HADY D., IBRAHIM E., J. Phys. Condens. Mat., 10 (1998), 847.
  • [13] KAUR G., KOMATSU T., J. Mater. Sci., 36 (2001), 4531.
  • [14] WOJCIECHOWSKI K., TOBOLA J., SCHMIDT M., J. Phys. Chem. Solids, 69 (2010), 2748.
  • [15] WANG K., STEIMER C., WUTTIG M., J. Optoelectron. Adv. M., 9 (7) (2007), 2008.
  • [16] AL-GHAMDI A.A., KHAN S.A., AL-HENTI S., ALAGEL F.A., ZULFEQUAR M., Curr. Appl. Phys., 11 (2011), 315.
  • [17] MOTT N.F., DAVIS E.A., Electronic Processes in NonCrystalline Materials, Oxford Press, Clarendon, 1979, p. 132.
  • [18] BOOLCHAND P., GEORGIEB D.G., GOODMAN B., J. Optoelectron. Adv. M., 3 (2001), 703.
  • [19] THORPE M.F., J. Non-Cryst. Solids, 57 (1983), 355.
  • [20] KUMAR P., THANGARAJ R., J. Non-Cryst. Solids, 352 2006), 2288.
  • [21] KOPYTOV A.V., KOSOBUTSKY A.V., Phys. Solid State, 51 (2009), 2115.
  • [22] HOLUBOVA J., CERNOSEK Z., CERNOSKOVA E., J. Adv. M., 1 (2007), 663.
  • [23] IVANOVA Z.G., CEMOSKOVA E., VASSILEV V.S., BOYCHEVA S.V., Mater. Lett., 57 (2003), 1025.
  • [24] OHTA N., SCHEUERMANN W., NAKAMATA K., Solid State Commun., 27 (1978), 1325.
  • [25] JIN Y., TANG K., AN C., HUANG L., J. Cryst. Growth, 253 (1 – 4) (2003), 429.
  • [26] MARFUNIN A.S., EGOGROVA N., MISCHHENKO A., Physics of Minerals and Inorganic Materials: An Introduction, Springer, Berlin, 1979.
  • [27] PANKOVE J.I., Optical processes in semiconductors, Dover Publications, New York, 1971.
  • [28] KAMATSU A., TAKEI S., MIZUHATA M., Thin Solid Films, 359 (1) (2000), 55.
  • [29] KUMAR P., THANGARAJ R., SATHIARAJ T.S., Phys. Status Solidi A, 208 (4) (2011), 838.
  • [30] TAUC J., Amorphous and Liquid Semiconductors, Plenum Press, New York, 1974, p. 569.
  • [31] KASTNER M., ADLER D., FRITZSCHE H., Phys. Rev. Lett., 37 (1976), 1504.
  • [32] PAULING L., The Nature of Chemical Bond, Cornell University, New York, 1976.
  • [33] SHARDA S., SHARMA N., SHARMA P., SHARMA V., Def. Diff. Forum, 45 (2011), 316.
  • [34] KATYAL S.C., VERMA R.C., J. Phys. Condens. Mat., 5 (1993), 3469.
  • [35] AMER H.H., ZEKRY A.E.H., EL ARABY S.M.S., GHAREEB K.E., ELSHAZLY A.A., Arab. J. Nuc. Sci. Appl., 45 (3) (2012), 256.
  • [36] RAM I.S., KUMAR S., SINGH R.K., SINGH P., SINGH K., AIP Adv., 5 (2015), 087164.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b5731e5-5a9d-49e1-aaef-68c0f650f9fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.