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In this paper, the delamination effect on the static and natural frequency re-
sponse of a microbeam subjected to the nonlinear electrostatic force is studied using
a semi-analytical approach for the first time. The Euler–Bernoulli beam assump-
tion along with the non-classical modified couple stress theory is used to obtain the
governing differential equation of motion and then a reduced-order model based on
Galerkin’s decomposition method is obtained. At first the microbeam with very small
delamination like an intact microbeam is solved and then the solution is compared
with those reported in the literature and the solution obtained using 3D-coupled
electromechanical software. After validation, the effects of delamination length and
its locations in thickness and length directions on the microbeam behavior are in-
vestigated in details. It is shown that the delamination has remarkable effects on
the characteristics of the microbeam, especially near the pull-in voltage. Also, the
delaminated microbeam with various thicknesses is studied using both the classical
and the non-classical theories. It is found that the difference between the two models
is significant for the thin microbeam with a thickness near of below than its material
length scale parameter. This investigation is helpful for the nondestructive detection
of the delamination in the beams.
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1. Introduction

The microelectromechanical system (MEMS) devices consist of micro-
structures such as beam and plate as the main part. This new technology is much
desired in communication system applications due to their low loss devices such
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as switches, phase shifters, antenna and resonators [1–3]. They are conventionally
actuated using electrostatic force which is nonlinear along a beam or plate and
causes the pull-in phenomenon. The sensitivity, frequency response, instability,
distortion, and the dynamic range of these devices are related to the pull-in
voltage and therefore their electromechanical analysis is very important.

The static deflection and the vibration of the intact microbeam around its
statically deflected position under the electrostatic force due to a DC polar-
ization voltage have been studied in many researches [4–9]. Abdel-Rahman

et al. [4] have numerically studied the clamped-clamped microbeam under the
action of an electrostatic force. The beam has been modeled as a distributed-
mass structure and solved using a boundary-value problem. They have also pre-
sented a semi-analytical approach to investigate it in their next study and shown
that their proposed reduced-order model can handle very stiff problems better
than the previous method [5]. A reduced-order model based on the Differential
Quadrature Method, Galerkin’s decomposition method, and the finite-element
model has been used by other researches for the pull-in voltage analysis [6–8].
In [9], the static behavior of electrostatically-actuated microbridges and micro-
cantilevers has been investigated analytically using Galerkin’s decomposition and
the homotopy perturbation method.

In these studies, the well-known classical theories have been used to investigate
the electrically actuated microbeams but the experimental observations have in-
dicated that the deformation behavior in microscale structures is size-dependent
in metals, polymers, and polysilicon [10]. Hence, several non-classical continuum
theories such as strain gradient, modified couple stress, and Eringen’s nonlocal
elasticity theories, have been proposed for isotropic elastic materials in which the
role(s) of material length-scale parameter(s) is (are) involved in the constitutive
equations. Wang et al. [11] have used the strain gradient theory to model the
electrostatically actuated microbeam-based MEMS for pull-in instability inves-
tigation. They also studied effects of surface energy on the pull-in instability of
electrostatically actuated micro/nanoscale structures [12–14]. Miandoab et al.

[15, 16] have used three non-classical continuum theories to estimate Young’s
modulus and non-classical parameters of polysilicon microbeam which leads to
an appropriate agreement with experimental observation. Also, they have shown
that the modified couple stress theory coincides experimental results better than
Eringen’s nonlocal elasticity and classical theories [16]. Moreover, the microbeam
model based on the modified couple stress theory contains only an additional ma-
terial constant, i.e., internal material length scale parameter l, unlike the strain
gradient models and therefore, in the past decade, many researchers have studied
the behavior of microbeams based on this novel and convenient theory [17–21].

All of the published researches have been dealt with the characterization of
the intact electrostatically actuated structures using classical or non-classical
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theory. On the other hand, the delamination (or through-the-width crack) can
be created in the microbeam during their manufacturing process or service life
and therefore studying the mechanical behavior of delaminated beams is new re-
searches in literature. The behavior of delaminated beams can be studied based
on the two well-known approaches, namely free and constrained models which
have been presented by Wang et al. [22] and Mujumdar et al. [23], respec-
tively. It is worth mentioning that the delaminated beam is divided into some
intact beams i.e. sub-beams in which the delamination is their boundaries. In the
constrained mode model, the sub-beams located in the delamination region are
constrained to have the same transverse deflections, but in the free mode model,
they are allowed to have different transverse deformations. Free vibrations of
a delaminated beam have been studied in some references [24–26]. Likewise, there
are studies on the transient response of the delaminated beams under the action
of moving loads and oscillating masses [27–29]. All these publications studied
macro delaminated beams. Recently, Jafari-Talookolaei et al. [30] have pre-
sented the bending and vibration characteristics of a Bernoulli–Euler microbeam
with single delamination using the non-classical modified couple stress theory.

To the best of authors’ knowledge, there are no publications on the static and
forced vibration analysis of the delaminated beam or microbeam under nonlinear
electrostatic force using classical or non-classical theory. Hence, investigating the
bending and vibration characteristics of a delaminated microbeam based on non-
classical theory is the main contribution of the present work.

In this paper, the clamped-clamped microbeam is studied with single delam-
ination subjected to a nonlinear electrostatic force distributed along its entire
length. The delaminated microbeam is divided into four intact sub-beams. It is
worth mentioning that two sub-beams located in the delamination region are
assumed to move together (the constrained mode). We use a new non-classical
model for Bernoulli–Euler beams which developed using the modified couple
stress theory concept by Park and Gao [31]. Then the static and vibration re-
sponses of the microbeam is studied for various parameters of the delamination.
It is observed that the characteristics of the delaminated microbeam are very
sensitive to that length and location. Also, the delaminated microbeam with
various geometrical parameters is studied based on classical and non-classical
Euler–Bernoulli models. It is shown that the difference between the two models
is significant for microbeams with small thickness.

2. Problem definition and formulation

The considered microbeam with a rectangular cross-section of b×h and length
of L under the electrostatic force is shown in Fig. 1. Referring to Fig. 2, the
delaminated microbeam is divided into four intact sub-beams. The microbeam
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has single delamination with length of Ld located at a distance of L1 from the
microbeam’s left end and height of h2 from the top surface (see Fig. 2). The
electrostatic force creates a distributed force per unit length of the microbeam
as below [32]:

(2.1) F (V,W ) =
1

2
εb

V 2

(d−W (x, t))2

Fig. 1. The schematic view of the delaminated microbean.

Fig. 2. Representation of a delaminated microbeam.

where ε is the dielectric constant of the gap between two electrodes and d is
the distance between the fixed and the movable electrodes. Likewise, V is an
applied voltage which is constant and independent of the time (DC). The sym-
bol of W (x, t) is the microbeam’s deflection. We assume that the delaminated
microbeam consisted of four intact sub-beams and two sub-beams located in the
delamination region move together (the constrained mode proposed in [23] i.e.
W2 = W3). Afterwards, we use the new model for the bending of a Bernoulli–
Euler beam developed using a non-classical modified couple stress theory by
Park and Gao [31] for the first time. They showed that the bending deforma-
tion of the beam has two contributions: one associated with the normal stress
component (the conventional term); and the other associated with the couple
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stress component (the additional term). They indicated that the bending rigid-
ity of the beam is equal to D = EI + µAl2 which explicitly depends on internal
material length scale parameter of l. This beam model based on the modified
couple stress theory contains only one additional material constant (l), unlike
the other non-local beam models. Nevertheless, the presence of l enables the
incorporation of the material microstructural features in the new model and
renders it possible to explain the size effect, unlike the classical Bernoulli–Euler
beam model. Based on this non-classical model and according to the constrained
mode model, the equation of motion of ith sub-beams can be written as below
(the readers are referred to [30] for more in-depth discussion of this equation):

DiW
′′′′

i (x, t) +miẄi(x, t) = F (V,W (x, t)) (i = 1 and 4),(2.2a)

(D2 +D3)W2
′′′′(x, t) + (m2 +m3)Ẅ2(x, t) = F (V,W (x, t)),(2.2b)

where:

(2.3) Di = EIi + µAil
2

in which prime (′) and dot (˙) denote the derivative of W with respect to the
spatial coordinate (x) and time (t), respectively. Besides, E is Young’s modulus,
µ is the shear modulus, and l is the length scale parameter of the microbeam.
Likewise, Ii and mi are the moment of inertia and mass per unit length of
the ith sub-beam, respectively. Ii and mi can be written as:

(2.4) Ii = bh3
i /12, mi = ρAi,

where ρ is the density of the microbeam and Ai is the ith sub-beam cross section
area.

A close inspection of Eq. (2.2b) reveals that the constrained mode model
has been considered for sub-beams 2 and 3. In the constrained mode model, the
sub-beams located in the delamination region are constrained to have the same
transverse deflections. The clamped-clamped boundary conditions are assumed
for the delaminated microbeam. These conditions can be written as:

(2.5) W1(0, t) = 0,W ′

1(0, t) = 0, W4(L, t) = 0, W ′

4(L, t) = 0.

The following continuity conditions of the transverse deflection have to be
considered for the sub-beam 2 (see Fig. 2):

(2.6) W1(L1, t) = W2(L1, t),W2(L1 + Ld, t) = W4(L1 + Ld, t).

The continuity conditions of the slope are as:

(2.7) W ′

1(L1, t) = W ′

2(L1, t), W ′

2(L1 + Ld, t) = W ′

4(L1 + Ld, t),
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the compatibility conditions of the shear forces are:

(2.8)
D1W

′′′

1 (L1, t) = (D2 +D3)W
′′′

2 (L1, t),

D4W
′′′

4 (L1 + Ld, t) = (D2 +D3)W
′′′

2 (L1 + Ld, t),

the equilibrium conditions for the bending moments by considering the axial
force are obtained as [28]:

D1W
′′

1 L1, t) = (D2 +D3)W
′′

2 (L1, t)(2.9)

− h2
1

4Ld

[

W ′

1(L1, t) −W ′

4(L1 + Ld, t)
1

E2A2
+ 1

E3A3

]

,

D4W
′′

4 (L1 + Ld, t) = (D2 +D3)W
′′

2 (L1 + Ld, t)(2.10)

− h2
1

4Ld

[

W ′

1(L1, t) −W ′

4(L1 + Ld, t)
1

E2A2
+ 1

E3A3

]

.

For convenience, we introduce the non-dimensional variables (denoted by hat)
as:

(2.11) x̂ =
x

L
, t̂ =

t

T
, Ŵ (x̂, t̂) =

W (x, t)

d
,

where T = (ρbh1L
4/D1)

1/2. By substituting Eq. (2.11) into Eq. (2.2), the nor-
malized governing equations of the motion of four sub-beams are obtained:

Ŵ
′′′′

i (x̂, t̂) +Bi
¨̂
Wi(x̂, t̂) = Ri

V 2

(1 − Ŵi(x̂, t̂))2
,(2.12)

Bi =















mi

Di

L4

T 2
(i = 1 and 4),

m2 +m3

D2 +D3

L4

T 2
(i = 2 and 3),

(2.13)

Ri =















1

Di

bεL4

2d3
(i = 1 and 4),

1

D2 +D3

bεL4

2d3
(i = 2 and 3).

3. Free vibration

The microbeam is assumed as a system with finite degrees of freedom using
the Galerkin decomposition method. Based on this method, the deflection of the
microbeam can be written as the multiplication of the spatial and time parts:

(3.1) Ŵi(x̂, t̂) =
n

∑

k=1

Φik(x̂)qk(t̂)
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where Φik(x) is the basis function of the ith sub-beam for the kth mode and qk(t)
is its time-dependent part. The qk(t) is not defined with index i because it is the
same for all sub-beams. The four sub-beams are assumed to move harmonically
in the initial situation without applied force as:

(3.2) Ŵi(x̂, t̂) = Φik(x̂) sin(ωk t̂),

where ωk is the natural frequency of the delaminated microbeam proportional to
the kth mode of free vibration. The above assumption is substituted in Eq. (2.12)
and then is solved for the zero applied voltage. The basis function is calculated
as:

Φik(x̂) = si sin(Bi
√
ωkx̂) + ci cos(Bi

√
ωkx̂)(3.3)

+ shi sinh(Bi
√
ωkx̂) + chi cosh(Bi

√
ωkx̂).

The four unknown constant parameters of the si, ci, shi, and chi of the ith sub-
beam and the natural frequency of the kth mode of the microbeam is obtained by
substituting Eq. (3.2), using Eq. (3.3), into twelve boundary conditions described
in Eqs. of (2.5)–(2.10).

4. Static behavior

When a DC voltage, Vs, is applied, the microbeam deflects in a static position
and therefore the movement for the static response is independent of the time
and it can be assumed as follows:

(4.1) Ŵis(x̂) =
n

∑

k=1

Φik(x̂)qsk

in which the linear-undamped mode shape, Φik, obtained in last section is used.
The index of s shows the static state. Thus, the microbeam is described in the
static state using (2.12) without time part dependency as:

(4.2) (1 − Ŵis(x̂))
2Ŵ ′′′′

is (x̂) = RiV
2
s .

Equation (4.1) is substituted in the above equation, using (3.3),and then it
is multiplied with Φik. Next, we integrate the outcome equation from x̂ = 0 to 1
(0 < x < L) (through the normalized length of the microbeam). It is noticed
that overall integral consisted of three section of 0 < x < L1, L1 < x < L1+Ld

and L1+Ld < x < L proportional to each sub-beams. The k non-linear algebraic
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equations are obtained as:

(4.3)

L1/L
∫

0

Φ1k(x̂)

[

1 − 2

n
∑

k=1

Φ1k(x̂)qsk +
(

n
∑

k=1

Φ1k(x̂)qsk

)2
] n

∑

k=1

Φ′′′′

1k(x̂)qskdx̂

+

(L1+Ld)/L
∫

L1/L

Φ2k(x̂)

[

1 − 2
n

∑

k=1

Φ2k(x̂)qsk +
(

n
∑

k=1

Φ2k(x̂)qsk

)2
] n

∑

k=1

Φ′′′′

2k(x̂)qskdx̂

+

1
∫

(L1+Ld)/L

Φ4k(x̂)

[

1 − 2
n

∑

k=1

Φ4k(x̂)qsk +
(

n
∑

k=1

Φ4k(x̂)qsk

)2
] n

∑

k=1

Φ′′′′

4k(x̂)qskdx̂

= V 2
s

[

L1/L
∫

0

R1Φ1k(x̂) +

(L1+Ld)/L
∫

L1/L

R2Φ2k(x̂) +

1
∫

(L1+Ld)/L

R4Φ4k(x̂)

]

dx̂.

The above equation is numerically solved to obtain qsk and then the static
response of the microbeam is determined using (4.1).

5. Forced vibration

It is interesting to study the natural frequency variation of the delaminated
microbeam versus the different applied DC voltages. Hence, we assume that the
microbeam has static deflection with a very small variation around it as:

(5.1) Ŵi(x̂, t̂) =
n

∑

k=1

Φik(x̂)qk(t̂) =
n

∑

k=1

Φik(x̂)(qsk + qdk(t̂)).

In which the linear-undamped mode shape, Φik, and qsk obtained in the last
section is used. The qdk is the dynamic component with a very small magnitude
around static equilibrium. Equation (2.12) is rearranged and the normalized
governing equation of the motion in the dynamic behavior is obtained as below:

(5.2) (1 − Ŵi(x̂, t̂))
2Ŵ ′′′′

i (x̂, t̂) +Bi(1 − Ŵi(x̂, t̂))
2 ¨̂
Wi(x̂, t̂) = RiV

2
s .

Equation (5.1) along with Eq. (3.3) is substituted in the above equation and then
it is multiplied with Φik(x). Next, we integrate the outcome equation from x̂ = 0
to 1 (0 < x < L) (through the normalized length of the microbeam). It is noticed
that overall integral consisted of three section of 0 < x < L1, L1 < x < L1+Ld

and L1+Ld < x < L proportional to each sub-beams. The k non-linear algebraic
equations are obtained as below:
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(5.3) +B1

L1/L
Z

0

Φ1k(x̂)

»

1−2
n

X

k=1

Φ1k(x̂)qk(t̂)+
“

n
X

k=1

Φ1k(x̂)qk(t̂)
”2

– n
X

k=1

Φ1k(x̂)q̈k(t̂)dx̂

+B2

(L1+Ld)/L
Z

L1/L

Φ2k(x̂)

»

1−2
n

X

k=1

Φ2k(x̂)qk(t̂)+
“

n
X

k=1

Φ2k(x̂)qk(t̂)
”2

– n
X

k=1

Φ2k(x̂)q̈k(t̂)dx̂

+B4

1
Z

(L1+Ld)/L

Φ4k(x̂)

»

1−2
n

X

k=1

Φ4k(x̂)qk(t̂)+
“

n
X

k=1

Φ4k(x̂)qk(t̂)
”2

– n
X

k=1

Φ4k(x̂)q̈k(t̂)

+

L1/L
Z

0

Φ1k(x̂)

»

1−2

n
X

k=1

Φ1k(x̂)qk(t̂)+
“

n
X

k=1

Φ1k(x̂)qk(t̂)
”2

– n
X

k=1

Φ′′′′

1k (x̂)qk(t̂)dx̂

+

(L1+Ld)/L
Z

L1/L

Φ2k(x̂)

»

1−2
n

X

k=1

Φ2k(x̂)qk(t̂)+
“

n
X

k=1

Φ2k(x̂)qk(t̂)
”2

– n
X

k=1

Φ′′′′

2k (x̂)qk(t̂)dx̂

+

1
Z

(L1+Ld)/L

Φ4k(x̂)

»

1−2
n

X

k=1

Φ4k(x̂)qk(t̂)+
“

n
X

k=1

Φ4k(x̂)qk(t̂)
”2

– n
X

k=1

Φ′′′′

4k (x̂)qk(t̂)dx̂

= V 2
s

»

L1/L
Z

0

R1Φ1k(x̂)+

(L1+Ld)/L
Z

L1/L

R2Φ2k(x̂)+

1
Z

(L1+Ld)/L

R4Φ4k(x̂)

–

dx̂.

The above k algebraic equations are rearranged as below [33]:

(5.4) q̈ = F (q),

where F is vector-valued function of q = [q1, q2, . . . , qk]. Then the linearized
equation is obtained after expressing the function F (q) in Taylor series, and
neglecting the higher order terms as q̈d = J(qs)qd; J is also the Jacobian matrix of
function F . Afterwards, the natural frequency related to the applied DC voltage,
Vs, is calculated using square root of the eigenvalues of the matrix at the related
static position of qs.

6. Numerical results

6.1. Verification

In order to verify our model, the static response of the microbeam with small
delamination of Ld = 0.001L like an intact microbeam is calculated for different
static forces (or different Vs) and compared with the result reported by Choi

and Lovell [34] and the three dimensional coupled electro-mechanical solution
achieved using a commercially available software IntelliSuiteTM in Fig. 3. The



178 A. Razeghi-Harikandeei et al.

considered intact microbeam made of polysilicon (E = 165 GPa) has geomet-
rical properties of L = 400µm, b = 45µm, h = 2µm, and d = 1µm such as
studied in [34]. Also, the length scale parameter of the polysilicon is not con-
sidered and it is set to zero to use classical theory for the sake of comparison.
The numerical result is obtained for maximum deflection of the microbeam for
one, two, three, four, and five terms of the series solution and shown in Fig. 3.
The results demonstrate that they are converged with increasing the number of
truncated terms in the series. As shown in Fig. 3, the five terms discretization
result approximately coincides with the three terms discretization solution and
they are in excellent agreement with the solutions presented by [34] and the 3D
electromechanical software. It can be concluded that the five-term discretiza-
tion is sufficient to investigate the microbeam under electrostatic force using the
proposed approach. Also, it is observed, in Fig. 3, that two and four-mode dis-
cretization results are similar to one and three-mode solutions respectively. It is
concluded that the mode discretization solution with the odd number is better
to model the fixed-fixed symmetrical beam problems. In other words, the even-
mode basis functions are unsymmetric and does not affect the response because
the microbeam maintains a symmetric shape during motion. In the following, we
investigate the delamination effect on the static deflection, the free and forced
vibration behavior of the microbeam based on the non-classical theory along
with three-mode Galerkin’s decomposition method. The length scale parameter
of polysilicon is set to l = 0.17 µm [16].

Fig. 3. Comparison of the maximum non-dimensional deflection of the intact microbeam
which has been solved using the proposed approach (one, two, three, four, and five-mode)

with the numerical result reported by Choi and Lovell [34] and the 3D coupled
electro-mechanical solution obtained using IntelliSuiteTM.
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6.2. Static deflection

First the central delamination is considered i.e. h2 = 0.5h, xd = 0.5L. In
Fig. 4, the static response is displayed for different delamination lengths. The
results show that the delamination leads to an increase in the maximum deflec-
tion of the microbeam in comparison to intact microbeam. The delamination
has an insignificant effect on the response of the microbeam at low electrostatic
force (applied voltage), but by increasing the voltage, its significant influence
is observed. It is important to note that from the mathematical point of view,
where the derivative of the maximum deflection is infinite, the pull-in phenomena
will happen [9]. In this voltage, the microbeam is not stable and the microbeam
is forced to be in contact with the substrate. The results show that the pull-in
voltage decreases when delamination length increases. It is indicated that the
delamination effect in the capacitive microbeam sensors which should be work
below the pull-in voltage such as microphone is impressively high [35].
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Fig. 4. The static response of the maximum non-dimensional deflection of the microbeam
with central delamination (h2 = 0.5h and xd = 0.5L) with different lengths.

In the next study, the delamination with lengthwise location xd = 0.5L,
Ld = 0.1L, and different vertical locations h2 = 0.1h, 0.3h, 0.4h, and 0.5h
is considered and the maximum non-dimensional deflection of the microbeam
versus different DC voltage is solved and shown in Fig. 5. The deflection decreases
when the delamination occurs far away from the microbeam’s mid-plane related
to the thickness and therefore the pull-in phenomenon occurs in higher voltage.
Also, it is important to note that owning to vertical symmetry, the movement
behavior of the microbeam for the vertical locations of h2 = 0.9h, 0.7h, and 0.6h
are equal to the h2 = 0.1h, 0.3h, and 0.4h, respectively.

Next, the lengthwise location of the delamination on the static response of
the delaminated microbeam is investigated in Fig. 6. The microbeam with the
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delamination length Ld = 0.1L, vertical location h2 = 0.5h and different length-
wise location xd = 0.1L, 0.3L, and 0.5L is considered. The results show that the
microbeam with the delamination with the central lengthwise location has more
deflection than the other with delamination near to the end of the microbeam.
Also, it is observed that the response related to different lengthwise location is
not regular due to the variation of overall stiffness that is also observed in other
researches like [36, 37].

Finally, it is interesting to study the classical theory limitation to be re-
sponsible for microbeam behavior. Thus the maximum static deflection of four
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Fig. 5. The static response of the maximum non-dimensional deflection of the microbeam
with delamination with lengthwise location xd = 0.5L, Ld = 0.1L, and different vertical

location of h2 = 0.1h, 0.3h, 0.4h, and 0.5h.

Fig. 6. The maximum non-dimensional deflection of the microbeam with delamination with
length of 0.1L located in the center of the microbeam in vertical location (h2 = 0.5h) with

different lengthwise location (xd = 0.1L, 0.3L, and 0.5L ).
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a) b)

c) d)

Fig. 7. The maximum non-dimensional deflection of the delaminated microbeam (xd = 0.5L,
h2 = 0.5h, and Ld = 0.1L) based on the classic and the non-classic theory with various

thickness; a) h = 2l, b) h = 4l, c) h = 6l and d) h = 10l.

different microbeams with the various thicknesses (h = 2l, 4l, 6l, and 10l) with
the constant ratio of the length and the width to the thickness are studied and
the solution results have been shown in Fig. 7. The results show that only the
non-classical theory should be used to study the very thin microbeams with
h/l < 10. The classical theory is approximately responsible for the behavior of
the microbeam below the pull-in instability operation for the h/l ratio lower
than 10 and near to 6 (Fig. 7c). But the exact estimation of the classical theory
only occurs in the thick microbeams with h/l > 10.

6.3. Free and forced vibration

The fundamental frequency variation of the delaminated microbeam versus
different applied DC voltage is studied here. First, the microbeam with central
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Table 1. The fundamental frequency of the delaminated microbeam with various
length (h2 = 0.5h and xd = 0.5L) at rest (Vs = 0).

Delamination length, Ld intact 0.1L 0.3L 0.7L 0.9L

Fundamental frequency [KHz] 109.562 95.980 88.463 81.599 65.876

delamination i.e. h2 = 0.5h, xd = 0.5L with different length is studied. The
variation of the fundamental frequency for the non-actuated microbeam (Vs = 0)
is shown in Table 1. It is observed that the delamination has a high effect on
the natural frequency value of the intact microbeam. When the delamination
length increases, the natural frequency decreases. The fundamental frequency
variation with different applied voltage is illustrated in Fig. 8 in which the pull-in
phenomenon is demonstrable in the natural frequency behavior. Mathematically
for the pull-in instability, the natural frequency will be zero that is reasonable
because the microbeam reaches to substrate with no motion. It is shown when the
applied voltage increases, the delamination effect on the fundamental frequency
reduction increases that cause the pull-in phenomenon occurs in lower voltage
for the microbeam with longer delamination.

Fig. 8. The influence of delamination length on the fundamental frequency of the
delaminated microbeam (h2 = 0.5h and xd = 0.5L).

The effect of vertical location of the delamination on the fundamental fre-
quency for the microbeam at rest (Vs = 0) is shown in Table 2. Delamination’s

Table 2. The fundamental frequency of the delaminated microbeam with various
vertical location (Ld = 0.1L and xd = 0.5L) at rest (Vs = 0).

Thicknesswise location, h2 0.5h 0.4 0.3h 0.1h

Fundamental frequency [KHz] 95.980 98.239 100.305 107.154
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length is set to 0.1L and located at the microbeam center (xd = 0.5L). Besides,
four vertical locations of h2 = 0.1h, 0.3h, 0.4h, and 0.5h are considered. It is ob-
served that when the delamination occurs near to the surface of the microbeam
the fundamental frequency increases. Figure 9 shows the effect of vertical loca-
tion of the delamination on the fundamental frequency variation versus different
applied voltage. It can be seen from Fig. 9, when the delamination comes near
to the surface of the microbeam, the natural frequency increases and therefore
the pull-in voltage occurs in a higher value.

Fig. 9. The effect of vertical location of the delamination on the fundamental frequency of
a delaminated microbeam (Ld = 0.1L and xd = 0.5L).

Additionally, the lengthwise location effect of the delamination on the funda-
mental frequency of the delaminated microbeam is investigated in Table 3 and
Fig. 10. It is assumed that delamination has a length of 0.1L and is vertically
located at h2 = 0.5h. Three lengthwise locations of xd = 0.1L, 0.3L, and 0.5L are
considered for the delamination. Table 3 shows that the fundamental frequency
of the non-actuated microbeam (Vs = 0) decreases when the delamination occurs
near the center of the microbeam. The fundamental frequency behavior versus
different applied DC voltage is illustrated in Fig. 10 which shows the pull-in volt-
age decreases when the lengthwise delamination comes near to the center of the
microbeam. Also, both of these observations show that the vibration response

Table 3. The fundamental frequency of the delaminated microbeam with various
horizontal location (h2 = 0.5h and Ld = 0.1L) at rest (Vs = 0).

Lengthwise location, Xd 0.5L 0.3L 0.1L

Fundamental frequency [KHz] 95.980 95.980 100.593
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Fig. 10. The effect of delamination lengthwise location on the fundamental frequency of the
microbeam (h2 = 0.5h and Ld = 0.1L).

related to different lengthwise location is not regular such as static response
shown in last section.

Finally, the classical theory limitation to be responsible for the fundamental
frequency behavior of four different microbeams with the various thicknesses and
the constant b/h = 22.5 and L/h = 200 are studied. The fundamental frequency
of the non-actuated microbeam (Vs = 0) is shown in Table 4. It is observed
that the difference between the two models is significant for the thin microbeam
(h < 10l). Figure 11 shows the prediction of the fundamental frequency variation
versus different applied voltage of the two models. The results show that the
classical theory does not exactly predict the behavior of the thin microbeam
with the ratio of the thickness to the length scale parameter below 10. In this
condition, the exact pull-in voltage is just obtained using non-classical theory.
Also, it is observed that the classical theory is approximately responsible for
the behavior of the microbeam with the h/l ratio lower than 10 and near to 6
(Fig. 11c) just below the pull-in instability operation. But only the non-classical
theory should be used to study for the very thin microbeam with h < 10l in all
applied voltage.

Table 4. The fundamental frequency prediction of the delaminated microbeam
by using two models (Ld = 0.1L, h2 = 0.5h, xd = 0.5L, b = 22.5h, and L = 200h) at

rest (Vs = 0).

Microbeam thickness, h 2l 4l 6l 10l 20l

Classical fundamental frequency [KHz] 550.134 275.067 183.378 110.027 55.013

Non-Classical fundamental frequency [KHz] 876.896 328.234 200.632 113.985 55.523
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Fig. 11. The normalized fundamental frequency of the delaminated microbeam (xd = 0.5L,
h2 = 0.5h, and Ld = 0.1L) based on the classical and the non-classical theory with various

thickness; a) h = 2l, b) h = 4l, c) h = 6l and d) h = 10l.

7. Conclusion

In this paper, the delamination effect on the static response, free and forced
vibrational characteristics of a microbeam was studied. The delaminated mi-
crobeam was divided into four intact sub-beams. The non-classical Euler–Ber-
noulli model along with the constrained mode model was considered to obtain
the mathematical formulations of the delaminated microbeam. The well-known
Galerkin’s method was used to convert the partial differential equations of mo-
tion into the ordinary differential equations. The results for the intact microbeam
was validated against the result reported from the available literature and 3D
electromechanical simulation result and then the excellent agreements were ob-
served. Numerical results were obtained to investigate the influence of the differ-
ent parameters of the delamination on the microbeam’s response. It was shown
that remarkable variation occurred in the natural frequency and static response
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of the delaminated microbeam which is very important for nondestructive detec-
tion of the delamination in microbeam. Also, the difference between two classical
and non-classical models of the Euler–Bernoulli beam was investigated using the
study on the delaminated beam with a different geometry. The results show that
only the non-classical theory should be used to study for the very thin microbeam
with thickness lower than 10l in all applied voltage.
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