Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article examines the methodology for assessing the effectiveness of strategic environmental directions for sustainable development in wartime through integral assessment, which provides a comprehensive picture of the impact of military actions on the ecological situation in Ukraine. The methodology is based on the fuzzy analytic hierarchy process (FAHP), which considers the uncertainty and complexity of processes characteristic of wartime conditions. The obtained results can be utilised for developing adaptive sustainable development strategies that address the specific challenges faced by Ukraine during military actions.
Wydawca
Rocznik
Tom
Strony
162--176
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
- Department of Tourism, Lviv Polytechnic National University, 2/4 Karpinskoho St., Building 1, Lviv, 79000, Ukraine
autor
- Department of Tourism, Lviv Polytechnic National University, 2/4 Karpinskoho St., Building 1, Lviv, 79000, Ukraine
autor
- Department of Tourism, Lviv Polytechnic National University, 2/4 Karpinskoho St., Building 1, Lviv, 79000, Ukraine
- Department of Tourism, Lviv Polytechnic National University, 2/4 Karpinskoho St., Building 1, Lviv, 79000, Ukraine
autor
- Department of Tourism, Lviv Polytechnic National University, 2/4 Karpinskoho St., Building 1, Lviv, 79000, Ukraine
autor
- Department of Tourism, Lviv Polytechnic National University, 2/4 Karpinskoho St., Building 1, Lviv, 79000, Ukraine
autor
- Department of Tourism, Lviv Polytechnic National University, 2/4 Karpinskoho St., Building 1, Lviv, 79000, Ukraine
autor
- Department of Tourism, Lviv Polytechnic National University, 2/4 Karpinskoho St., Building 1, Lviv, 79000, Ukraine
Bibliografia
- 1. Alrasheedi M., Mardani A., Mishra A. R., Streimikiene D., Liao H., Al-Nefaie A. (2020). Evaluating the green growth indicators to achieve sustainable development: A novel extended interval-valued intuitionistic fuzzy-combined compromise solution approach. Sustainable Development, 29(1), 120– 142. https://doi.org/10.1002/sd.2136
- 2. Argüden Y., Ilgaz P., Kilitçioğlu H., Erimez E. (2021). Sustainable Success Model. https://arge.com/books/sustainable-success-model.pdf. (Accessed 08 August 2024).
- 3. Biermann F., Kanie N., Kim R. (2017). Global governance by goal-setting: The novel approach of the UN Sustainable Development Goals. Curr. Opin. Environ. Sustain., 26, 26–31.
- 4. Collste D., Pedercini M., Cornell S. (2017). Policy coherence to achieve the SDGs: Using integrated simulation models to assess effective policies. Sustain. Sci., 12, 921–931.
- 5. Fauré E., Arushanyan Y., Ekener E., Miliutenko S., Finnveden G. (2017). Methods for assessing future scenarios from a sustainability perspective. Eur. J. Futures Res., 5, 17.
- 6. Florke M., Barlund I., Vliet M.T., Bouwman A.F., Wada Y. (2019). Analysing trade-offs between SDGs related to water quality using salinity as a marker, Curr. Opin. Environ. Sustain. 36, 96–104, https://doi.org/10.1016/j.cosust.2018.10.005
- 7. Global Risks Report. (2024). https://www.weforum. org/publications/global-risks-report-2024. (Accessed 08 August 2024).
- 8. Hariram N., Mekha K., Suganthan V., Sudhakar K. (2023). Sustainalism. An integrated socio-economic-environmental model to address sustainable development and sustainability. Sustainability, 15, 10682. https://doi.org/10.3390/su151310682
- 9. Hutton C.W., Nicholls R.J., Laz’ar A.N., Chapman A., Schaafsma M., Salehin M. (2018). Potential trade-offs between the sustainable development goals in Coastal Bangladesh, Sustainability 10, 1108, https://doi.org/10.3390/su10041108
- 10. Ziolo K., Bąk M., Spoz I. (2021). Achieving environmental policy objectives through the implementation of sustainable development goals. The case for European union countries, Energies 14(8). 1–23, https://doi.org/10.3390/en14082129
- 11. Klarin T. (2018). The concept of sustainable development: from its beginning to the contemporary issues. Zagreb Int. Rev. Econ. Bus., 21, 67–94.
- 12. Kluza K., Ziolo M., Postula M. (2024). Climate policy development and implementation from the Sustainable Development Goals perspective. Evidence from the European Union countries. Energy Strategy Reviews, 52, 101321, https://doi.org/10.1016/j.esr.2024.101321
- 13. Lebel L. (2014). Closing knowledge – action gaps in adaptation to climate change in the Asia-Pacific region, Environ. Sustain. Dev. 13, 204–222. https:// doi.org/10.1504/IJESD.2014.060222
- 14. Ly A., Cope M. (2023). New conceptual model of social sustainability: review from past concepts and ideas. Int. J. Environ. Res. Public Health, 20, 5350.
- 15. Malovanyy M., Moroz O., Popovich V., Kopiy M., Tymchuk I., Sereda A., Krusir G., Soloviy Ch. (2021). The perspective of using the «open biological conveyor» method for purifying landfill filtrates. Environmental Nanotechnology, Monitoring & Management, 16(2021), 100611. https://doi.org/10.1016/j.enmm.2021.100611
- 16. Manidina, Y., Belokon, K., Berenda, N., Troitska, O. (2021). Using plasma catalysis for oxidation of sulphur dioxide to sulphur trioxide. Procedia Environmental Science, Engineering and Management, 8(1), 15–21.
- 17. Nahursky O., Krylova H., Vasiichuk V., Kachan S., Nahursky A., Paraniak N., Sabadash V., Malovanyy M. (2022). Utilization of household plastic waste in technologies with final biodegradation. Ecological Engineering & Environmental Technology, 23(4), 94–100 https://doi.org/10.12912/27197050/150234
- 18. Pospelov, B., Rybka, E., Meleshchenko, R., Krainiukov, O., Harbuz, S., Bezuhla, Y. et al. (2020). Use of uncertainty function for identification of hazardous states of atmospheric pollution vector. Eastern-European Journal of Enterprise Technologies, 2, 10(104), 6–12. https://doi.org/10.15587/1729-4061.2020.200140
- 19. Pyliavskyi I., Pushak H., Molnar O., Dzyana H., Kushniriuk V. (2021). Modeling ways to improve green growth and environmental protection in the context of governance. Journal of Environmental Engineering and Landscape Management, 29(3). 178–186. https://doi.org/10.3846/jeelm.2021.14662
- 20. Raggamby A., Rubik F. (2012). Sustainable Development, Evaluation and Policy: Making Theory, Practise and Quality Assurance. MPG Books Group, UK. https://evalsdgs.org/wp-content/uploads/2018/07/ sustainable-development-evaluation-and-policy-making.pdf (Accessed 08 August 2024).
- 21. Renaud F.G., Zhou X., Bosher L., Barrett B., Huang S. (2022). Synergies and trade-offs between sustainable development goals and targets: innovative approaches and new perspectives, Sustain. Sci. 17(4). 317–1322, https://doi.org/10.1007/s11625-020-00815-9
- 22. Roik O., Terebukh A., Pankiv N. (2023). The assessment of tourist resources in Ukraine in the conditions of war. Journal of Geology, Geography and Geoecology, 32(3). 598–608.
- 23. Safranov T., Chugai A., Kolіsnyk A., Lavrov Т., Mozgovyy A. (2024). The Environmental component of sustainable development potential in the Odesa Industrial-Urban agglomeration. Ecological Engineering & Environmental Technology, 25(9), 116– 129. https://doi.org/10.12912/27197050/190391
- 24. Sreenath S., Sudhakar K., Yusop A. (2021). Sustainability at airports: Technologies and best practices from ASEAN countries. J. Environ. Manag., 299, 113639.
- 25. Sylkin O., Kryshtanovych M., Zachepa A., Bilous S., Krasko A. (2019). Modeling the process of applying anticrisis management in the system of ensuring financial security of the enterprise. Business: Theory and Practice, 20, 446–455. https://doi. org/10.3846/btp.2019.41
- 26. Taylor C., Gully B., Sánchez A., Rode E., Agarwal A. (2016). towards materials sustainability through materials stewardship. Sustainability, 8, 1001.
- 27. Terebukh A., Pankiv N., Roik O. (2023). Integral assessment of the impact on Ukraine’s environment of military actions in the conditions of Russian aggression. Ecological Engineering & Environmental Technology, 24(3), 90–98.
- 28. Tulaydan, Y., Malovanyy, M., Kochubei, V., Sakalova, H. (2017). Treatment of high-strength wastewater from ammonium and phosphate ions with the obtaining of struvite. Chemistry & Chemical Technology. 11(4), 463–468. https://doi.org/10.23939/chcht11.04.463
- 29. Tymchuk I., Malovanyy M., Shkvirko O., Yatsukh K. (2021). Sewage sludge as a component to create a substrate for biological reclamation. Ecological Engineering & Environmental Technology, 22(4), 229–237. https://doi. org/10.12912/27197050/137863
- 30. Vakal S., Yanovska A., Vakal V., Artyukhov A., Shkola V., Yarova T., Dmitrikov V., Krmela J., Malovanyy M. (2020). Minimization of soil pollution as a result of the use of encapsulated mineral fertilizers. Journal of Ecological Engineering. 22(1), 221–230. doi.org/10.12911/22998993/128965
- 31. Villamayor-Tomas S., Muradian R. (2023). The Barcelona School of Ecological Economics and Political Ecology A Companion in Honour of Joan; Springer Nature: Berlin/Heidelberg, Germany.
- 32. Wang X., Ren H., Wang P., Yang R., Luo L., Cheng F. A. (2018). Preliminary study on target 11.4 for UN sustainable development goals. Int. J. Geoherit. Park., 6, 18–24.
- 33. Weitz N., Carlsen H., Nilsson M., Skånberg K. (2018). Towards systemic and contextual priority setting for implementing the 2030 Agenda. Sustain. Sci., 13, 531–548.
- 34. Zhang Q., Prouty C., Zimmerman J.B., Mihelcic J.R. (2016). More than target 6.3: a systems approach to Rethinking sustainable development goals in a Resource Scarce world, Engineering 2, 481–489, https://doi.org/10.1016/J.ENG.2016.04.010
- 35. Zijp M.C., Heijungs R., Van der Voet E., Van de Meent D., Huijbregts M.A.J., Hollander A., Posthuma L. (2015). An identification key for selecting methods for sustainability assessments. Sustainability, 7, 2490–2512.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b535eef-9b34-4bf6-9d6c-5f907b3e2804
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.