PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stability of monazite and disturbance of the Th-U-Pb system under experimental conditions of 250–350 °C and 200–400 MPa

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This experimental study provides important data filling the gap in our knowledge on monazite stability under conditions of fluid-mediated low-temperature metamorphic alteration and post-magmatic hydrothermal alterations. The stability of monazite and maintenance of original Th-U-total Pb ages were tested experimentally under P-T conditions of 250–350 °C and 200–400 MPa over 20–40 days. The starting materials included the Burnet monazite + K-feldspar ± albite ± labradorite + muscovite + biotite + SiO2 + CaF2 and 2M Ca(OH)2 or Na2Si2O5 + H2O fluid. In the runs with 2M Ca(OH)2, monazite was unaltered. REE-enriched apatite formed at 350 °C and 400 MPa. The presence of the Na2Si2O5 + H2O fluid promoted the strong alteration of monazite, the formation of secondary REE-enriched apatite to fluorcalciobritholite, and the formation of REE-rich steacyite. Monazite alteration included the newly developed porosity, patchy zoning, and partial replacement by REE-rich steacyite. The unaltered domains of monazite maintained the composition of the Burnet monazite and its age of (or close to) ca. 1072 Ma, while the altered domains showed random dates in the intervals of 375–771 Ma (250 °C, 200 MPa run), 82–253 Ma (350 °C, 200 MPa), and 95–635 Ma (350 °C, 400 MPa). The compositional alteration and disturbance of the Th-U-Pb system resulted from fluid-mediated coupled dissolution-reprecipitation. In nature, such age disturbance in monazite can be attributed to post-magmatic alteration in granitic rocks or to metasomatic alteration during metamorphism. Recognition of potentially altered domains (dark patches in high-contrast BSE-imaging, developed porosity or inclusions of secondary minerals) is crucial to the application of Th-U-Pb geochronology.
Rocznik
Strony
405--425
Opis fizyczny
Bibliogr. 77 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Kraków ING PAN, Senacka 1, PL-31002 Kraków, Poland
  • Institute of Geological Sciences, Jagiellonian University, Oleandry 2a, PL-30063 Kraków, Poland
autor
  • Dionýz Štúr State Geological Institute, Mlynská dolina 1, SK-81704 Bratislava, Slovak Republic
  • AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, Mickiewicza 30, PL-30059 Krakow, Poland
Bibliografia
  • 1. Aleinikoff, J. N., Grauch, R. I., Mazdab, F. K., Kwak, L., Fanning, C. M. & Kamo, S. L., 2012. Origin of an unusual monazite- xenotime gneiss, Hudton Hightands, New York: SHRIMP U-Pb geochronology and trace element geochemistry. American Journal of Science, 312: 723-765.
  • 2. Appel, P., Cirrincione, R., Fiannacca, P. & Pezzino, A., 2011. Age constraints on Late Paleozoic evolution of continental crust from electron microprobe dating of monazite in the Peloritani Mountains (southern Italy): another example of resetting of monazite ages in high-grade rocks. International Journal of Earth Sciences (Geologische Rundschau), 100: 107-123.
  • 3. Ayers, J. C., Crombie, S., Loflin, M., Miller, C. F. & Luo, Y., 2013,Country rock monazite response to intrusion of the Searchlight pluton, Southern Nevada. American Journal of Science, 313: 345-394.
  • 4. Black, L. P., Fitzgerald, J. D. & Harley, S. L., 1984. Pb isotopic composition, colour, and microstructure of monazites from a polymetamorphic rock in Antarctica. Contributions to Mineralogy andPetrology, 85: 141-148.
  • 5. Broska, I. & Siman, P., 1998. The breakdown of monazite in the West-Carpathian Veporic orthogneisses and Tatric gramtes. Geologica Carpathica, 49: 161-167.
  • 6. Broska, I., Wiltiams, C. T., Janák, M. & Nagy, G., 2005. Alteration and breakdown of xenotime-(Y) and monazite-(Ce) in granitic rocks of the Western Carpathians, Slovakia. Lithos, 82: 71-83.
  • 7. Budzyń, B., Harlov, D. E., Majka, J. & Kozub, G. A., 2014. Experimental constraints on the monazite-fluorapatite-allanite and xenotime-(Y,HREE)-rich fluorapatite-(Y,HREE)-rich epidote phase relations as a function of pressure, temperature, and Ca vs. Na activity in the fluid. Geophysical Research Abstracts, 16, EGU2014-8583.
  • 8. Budzyń, B., Harlov, D. E., Wiltiams, M. L. & Jercinovic, M. J., 2011. Experimental determination of stability relations between monazite, fluorapatite, altanite, and REE-epidote as a function of pressure, temperature, and fluid composition. American Mineralogist, 96: 1547-1567.
  • 9. Budzyń, B., Hetherington, C. J., Williams, M. L., Jercinovic, M. J. & Michalik, M., 2010. Fluid-mineral interactions and constraints on monazite alterations during metamorphism. Mineralogica Magazine, 74: 633-655.
  • 10. Budzyń, B. & Kozub-Budzyń, G. A., 2015. The stability of xenotime in high Ca and Ca-Na systems under experimental conditions of 250-350 °C and 200-400 MPa: the implications for fluid-mediated low-temperature processes in granitic rocks. Geological Quarterly, 59: (in press). DOI: 10.7306/gq.1223.
  • 11. Cherniak, D. J. & Pyle, J. M., 2008. Th diffusion in monazite. Chemical Geology, 256: 52-61.
  • 12. Cherniak, D. J., Watton, E. B., Grove, M. & Harrison, T. M., 2004. Pb diffusion in monazite: a combined RBS/SIMS study. Geochimica et Cosmochimica Acta, 68: 829-840.
  • 13. Cuney, M. & Mathieu, R., 2000. Extreme light rare element mobilization by diagenetic fluids in the geological environment of the Oklo natural reactor zones, Franceville basin, Gabon. Geology, 28: 743-746.
  • 14. Ermolaeva, V. N., Pekov, I. V., Chukanov, N. V. & Zadov, A. E., 2007. Thorium mineralization in hyperalkaline pegmatites and hydrothermalites of the Lovozero Pluton, Kola Peninsula. Geology of Ore Deposits, 49: 758-775.
  • 15. Finger, F., Broska, I., Roberts, M. P. & Schermaier, A., 1998. Re- placement of primary monazite by apatite-allanite-epidote coronas in an amphibolite facies granite gneiss from the eastern Alps. American Mineralogist, 83: 248-258.
  • 16. Förster, H.-J., 1998. The chemkal composition of REE-Y-Th- U-rich accesory minerals in peraluminous grantes of the Erzgebirge-Fichtelgebirge region, Germany, Part I: The monazite-(Ce)-brabantite solid solution series. American Mineralogist, 83: 259-272.
  • 17. Gardes, E., Jaoul, O., Montel, J., Seydoux-Guillaume, A. M. & Wirth, R., 2006. Pb diffusion in monazite: an experimental study of Pb2+ + Th4+ 2Nd3+ interdiffusion. Geochimica et Cosmochimica Acta, 70: 2325-2336.
  • 18. Gieré, R. & Sorensen, S. S., 2004. Alianite and other REE-rich epidote-group minerals. In: Liebscher, A. & Franz, G. (eds), Epidotes. Reviews in Mineralogy and Geochemistry. The Mineralogical Society of America, Washington, DC, U.S.A., 56: 431-493.
  • 19. Haas, J. R., Shock, E. L. & Sassani, D. C., 1995. Rare earth element in hydrothermal systems: Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures. Geochimica et Cosmochimica Acta, 59: 4329-4350.
  • 20. Harlov, D. E. & Hetherington, C. J., 2010. Partial high-grade alteration of monazite using alkali-bearing fluids: Experiment and nature. American Mineralogist, 95: 1105-1108.
  • 21. Harlov, D. E., Wirth, R. & Hetherington, C. J., 2007. The relative stability of monazite and huttonite at 300-900°C and 2001000 MPa: metasomatism and the propagation of metastable mineral phases. American Mineralogist, 92: 1652-1664.
  • 22. Harlov, D. E., Wirth, R. & Hetherington, C. J., 2011. Fluid-mediated partial alteration in monazite: the role of coupled dissoiut tion-reprecipitation in element redistribution and mass transfer. Contributions to Mineralogy and Petrology, 162: 329- 348.
  • 23. Hecht, L. & Cuney, M., 2000. Hydrothermal alteration of monazite in the Precambrian crystalline basement of the Athabasca Basin (Saskatchewan, Canada): implications for the formation of unconformity-related uranium deposits. Mineralium Deposita, 35: 791-795.
  • 24. Hetherington, C. J., Harlov, D. E. & Budzyń, B., 2010. Experimental initiation of dissolution-reprecipitation reactions in monazite and xenotime: the role of fluid composition. Mineralogy and Petrology, 99: 165-184.
  • 25. Janots, E., Brunet, F., Goffé, B., Poinssot, C., Burchard, M. & Cemic, L., 2007. Thermochemistry of monazite-(La) and dissakisite-(La): implications for monazite and allanite stability in metapelites. Contributions to Mineralogy and Petrology, 154: 1-14.
  • 26. Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J.-O. & Span- dler, C., 2008. Prograde metamorphic sequence of REE minerals in pelitic rocks of the Central Alps: implications for allanite-monazite-xenotime phase reiations from 250 to 610°C. Journal of Metamorphic Geology, 26: 509-526.
  • 27. Janots, E., Negro, F., Brunet, F., Goffé, B., Engi, M. & Bouy- baouene, M. L., 2006. Evoiution of the REE mineralogy in HP-LT metapelites of the Sebtide complex, Rif, Motocco: monazite stability and geochronology. Lithos, 87: 214-234.
  • 28. Jercinovic, M. J. & Williams, M. L., 2005. Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and Beam Irradiation Effects. American Mineralogist, 90: 526-246.
  • 29. Jercinovic, M. J., Wiliiams, M. L. & Lane, E. D., 2008. In situ trace element analysis in complex, multi-phase materials by EPMA. Chemical Geology, 254: 197-215.
  • 30. Kabalov, Yu. K., Sokolova, E. V., Pautov, L. A. & Schneider, J., 1998. Crystal structure of a new mineral turkestanite: a calcium analogue of steacyite. Crystallography Reports, 43: 584-588. [Translated from Russian in: Kristallografiya, 43, 4: 632-636.]
  • 31. Konečný, P., Siman, P., Holický, I., Janák, M. & Kollárová, V., 2004. Method of monazite dating by means of the electron microprobe. Mineralogia Slovaca, 36: 225-235 [In Slovak, with English abstract].
  • 32. Lee, D. E. & Bastron, H., 1967. Fractionation of rare-earth elements in allanite and monazite as related to geology of the Mt. Wheeler mine area, Nevada. Geochimica et Cosmochimica Acta, 31: 339-356.
  • 33. Lee, D. E. & Dodge, F. C. W., 1964. Accessory minerals in some granitic rocks in California and Nevada as a function of calcium content. American Mineralogist, 49: 1660-1669.
  • 34. Linthout, K., 2007. Tripartite division of the system 2REEPO4 - CaTh(PO4)2 - 2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2. Canadian Mineralogist, 45: 503-508.
  • 35. Lisowiec, K., Budzyń, B., Słaby, E., Renno, A. D. & Götze, J., Fluid-induced magmatic and post-magmatic zircon and monazite patterns in granitoid pluton and reiated rhyolitic bodies. ChemiederErde- Geochemistry, 73: 163-179.
  • 36. Lisowiec, K., Budzyń, B., Słaby, E., Schulz, B. & Renno, A. D., Th-U-total Pb timing constraints on the emplacement of the granitoid pluton of Stolpen, Germany. Acta Geologica Polonica, 64: 457-472.
  • 37. Majka, J. & Budzyń, B., 2006. Monazite breakdown in metapelites from Wedel Jarlsberg Land, Svalbard - preliminary results. Mineralogia Polonica, 37: 61-69.
  • 38. Meldrum, A., Boatner, L. A., Weber, W. J. & Ewing, R. C., 1998. Radiation damage in zircon and monazite. Geochimica et Cosmochimica Acta, 62: 2509-2520.
  • 39. Montel, J. M., Foret, S., Veschambre, M., Nicollet, C. & Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology, 131: 37-53.
  • 40. Nasdala, L., Ruschel, K., Rhede, D., Wirth, R., Kerschhofer- Wallner, L., Kennedy, A. K., Kinny, P. D., Finger, F. & Groschopf, N., 2010. Phase decomposition upon alteration of radiation damaged monazite-(Ce) from Moss, Rstfold, Nor- way. Chimia, 64: 705-711.
  • 41. Ondrejka, M., Uher, P., Putiš, M., Broska, I., Bačík, P., Konečný, P. & Schmiedt, I., 2012. Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example from the Veporic orthogneiss, Western Carpathians, Slovakia. Lithos, 142-142: 245-255.
  • 42. Pan, Y. & Fleet, M. E., 1996. Rare earth element mobility during prograde granulite facies metamorphism: significance of fluorine. Contributions to Mineralogy and Petrology, 123: 251262.
  • 43. Pan, Y. & Fleet, M. E., 2002. Composition of the apatite-group minerals: substitution mechanisms and controlling factors. In: Kohn, M. J., Rakovan, J. & Hughes, J. M. (eds) Phosphates: Geochemical, Geobiological, and Materials Importance. Reviews in Mineralogy and Geochemistry, 48: 13-49.
  • 44. Parrish, R. R., 1990. U-Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27: 1431-1450.
  • 45. Pautov, L.A., Agakhanov, A.A., Sokolova, E. & Hawthorne, F.C., 2004. Maleevite, BaB2Si2O8, and pekovite, SrB2Si2O8, new mineral species from the Dara-i-Pioz alkaline massif, Northern Tajikistan: description and crystal structure. The Canadian Mineralogist,42: 107-119.
  • 46. Pautov, L.A., Agakhanov, A.A., Sokolova, E.V. & Kabalov, Yu. K., 1997. Turkestanite -Th(Ca,Na)2(K1-x,Dx)(Si8O2ö) nH2O: A new mineral with Si-O rings. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 126: 45-55.
  • 47. Petersen, O. V., Johnsen, O. & Micheelsen, H. I., 1999. Turkestanite from the Ilímaussaq alkaiine complex, South Greent land. Neues Jahrbuch für Mineralogie, Monatshefte, 9: 424-432.
  • 48. Petrík, I. & Konečný, P., 2009. Metasomatic replacement of inherited metamorphic monazite in a biotite-garnet granite from the Nízke Tatry Mountains, Western Carpathians, Slovakia: Chemical dating and evidence for disequilibrium melting. American Mineralogist, 94: 957-974.
  • 49. Poitrasson, F., Chenery, S. & Bland, D. J., 1996. Contrasted monazite hydrothermal alteration mechanisms and their geochemical implications. Earth and Planetary Science Letters, 145: 79-96.
  • 50. Poitrasson, F., Chenery, S. & Shepherd, T. J., 2000. Electron microprobe and LA-ICPMS study of monazite hydrothermal alteration; implications for U-Th-Pb geochronology and nuclear ceramics. Geochimica et Cosmochimica Acta, 64: 3283-3297.
  • 51. Poitrasson, F., Oelkers, E., Schott, J. & Montel, J.-M., 2004. Experimental determination of synthetic NdPO4 monazite end- member solubility in water from 21 to 300°C: implications for rare earth element mobility in crustal fluids. Geochimica et Cosmochimica Acta, 68: 2207-2221.
  • 52. Pyle, J. M., Spear, F. S., Wark, D. A., Daniel, Ch. D. & Storm, L. C., 2005. Contributions to precision and accuracy of monazite microprobe ages. American Mineralogist, 90, 547-577.
  • 53. Rasmussen, B. & Muhling, J. R., 2007. Monazite begets monazite: evidence for the dissoiution of detrital monazite and reprecipitation of syntectonic monazite during low-grade regional metamorphism. Contributions to Mineralogy and Petrology. 154: 675-689.
  • 54. Rasmussen, B. & Muhling, J. R., 2009. Reactions destroying detrital monazite in greenschist-facies sandstones from the Wit- watersrand basin, South Africa. Chemical Geology, 264: 311-327.
  • 55. Read, D., Andreoli, M. A. G., Knoper, M., Will iams, C. T. & Jarvis, N., 2002. The degradation of monazite: Implications for the mobility of rare-earth and actinide elements during low-temperature alteration. European Journal of Mineralogy, 14: 487-498.
  • 56. Ruschel, K., Nasdala, L., Kronz, A., Hanchar, J. M., Többens, D. M., Škoda, R., Finger, F., Möller, A., 2012. A Raman spectroscopic study on the structural disorder of monazite-(Ce). Mineralogy and Petrology, 105: 41-55.
  • 57. Seydoux-Guillaume, A. M., Goncalves, P., Wirth, R. & Deutsch, A., 2003. TEM study of polyphasic and discordant monazites: site specific specimen preparation using the Focused Ion Beam technique. Geology, 31: 973-976.
  • 58. Seydoux-Guillaume, A.-M., Montel, J.-M., Bingen, B., Bosse, V., de Parseval, P., Paquette, J.-L., Janots, E. & Wirth, R., 2012. Low-temperature alteration of monazite: Fluid mediated coupled dissolution-precipitation, irradiation damage, and disturbance of the U-Pb and Th-Pb chronometers. Chemical Geology, 330-331: 140-158.
  • 59. Seydoux-Guillaume, A. M., Paquette, J. L., Wiedenbeck, M., Montel, J. M. & Heinrich, W., 2002a. Experimental resetting of the U-Th-Pb systems in monazite. Chemical Geology, 191: 165-181.
  • 60. Seydoux-Guillaume, A. M., Wirth, R., Deutsch, A. & Schärer, U., 2004. Microstructure of 24-1928 Ma concordant monazites: implications for geochronology and nuclear waste deposits. Geochimica et Cosmochimica Acta, 68: 2517-2527.
  • 61. Seydoux-Guillaume, A. M., Wirth, R. & Ingrin, J., 2007. Contrasting response of ThSiO4 and monazite to natural irradiation. European Journal of Mineralogy, 19: 7-14.
  • 62. Seydoux-Guillaume, A. M., Wirth, R., Nasdala, L., Gottschalk,
  • 63. M., Montel, J. M. & Heinrich, W., 2002b. An XRD, TEM and Raman study of experimentally annealed natural monazite. Physics and Chemistry of Minerals, 29: 240-253.
  • 64. Spear, F. S., 2010. Monazite-allanite phase relations in metapelites. Chemical Geology, 279: 55-62.
  • 65. Spear, F. S., Pyle, J. M. & Cherniak, D., 2009. Limitations of chemical dating of monazite. Chemical Geology, 266: 227239.
  • 66. Suzuki, K. & Adachi, M., 1991. Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon, and xenotime. Geochemical Journal, 25: 357-376.
  • 67. Suzuki, K. & Kato, T., 2008. CHIME dating of monazite, xenotime, zircon and polycrase: Protocol, pittalls and chemical criterion of possibly discordant age data. Gondwana Research, 14, 569-586.
  • 68. Tartese, R., Ruffet, G., Poujol, M., Boulvais, P. & Ireland, T. R., 2011. Simultanous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: a story of fluids. Terra Nova, 23: 390-398.
  • 69. Teufel, S. & Heinrich, W., 1997. Partial resetting of the U-Pb isotope system in monazite through hydrothermal experiments: An SEM and U-Pb isotope study. Chemical Geology, 137: 273-281.
  • 70. Townsend, K. J., Miller, C. F., D’Andrea, J. L., Ayers, J. C., Harrison, T. M. & Coath, C. D., 2000. Low temperature replacement of monazite in the Ireteba granite, Southern Nevada: geochronological implications. Chemical Geology, 172: 95112.
  • 71. Vilalva, F. C. J. & Vlach, S. R. F., 2010. Major- and trace-element composition of REE-rich turkestanite from peralkaline granites of the Morro Redondo Complex, Graciosa Province, south Brasil. Mineralogical Magazine, 74: 645-658.
  • 72. Vozárová, A., Konečný, P., Šarinová, K. & Vozár, J., 2014. Ordovician and Cretaceous tectonothermal history of the Southern Gemericum Unit from microprobe monazite geochronology (Western Carpathians, Slovakia). International Journal of Earth Sciences (Geologische Rundschau), 103: 1005-1022.
  • 73. Williams, M. L. & Jercinovic, M. J., 2002. Microprobe monazite geochronology: putting absolute time into micro structural analyses. Journal of Structural Geology, 24: 1013-1028.
  • 74. Williams, M. L., Jercinovic, M. J., Harlov, D. E., Budzyń, B. & Hetherington, C. J., 2011. Resetting monazite ages during fluid-related alteration. Chemical Geology, 283: 218-225.
  • 75. Williams, M. L., Jercinovic, M. J. & Hetherington, C. J., 2007. Microprobe monazite geochronology: understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35: 137-175.
  • 76. Wing, B. A., Ferry, J. M. & Harrison, T. M., 2003. Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145: 228-250.
  • 77. Wood, S. A., 1990. The aqueous geochemistry of the rare earth elements and yttrium: 1. Review of available low-temperature data for inorganic complexes and the inorganic REE speciation of natural waters. Chemical Geology, 82: 159-186.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b52cb29-07a4-4d0d-aac2-5a0caeb993fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.