Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Variations of temperature, salinity and oxygen of the Baltic Sea on interannual to decadal timescales were studied for the period from 1950 to 2020. Both observational data and the output of a numerical circulation model of the Baltic Sea were analyzed. In addition, we investigated the influence of atmospheric parameters and river runoff on the observed hydrographic variations. Variability of sea surface temperature (SST) closely follows that of air temperature in the Baltic on all timescales examined. Interannual variations of SST are significantly correlated with the North Atlantic Oscillation in most parts of the sea in winter. The entire water column of the Baltic Sea has warmed over the period 1950 to 2020. The trend is strongest in the surface layer, which has warmed by 0.3–0.4°C decade−1, noticeably stronger since the mid-1980s. In the remaining water column, characterized by permanent salinity stratification in the Baltic Sea, warming trends are slightly weaker. A decadal variability is striking in surface salinity, which is highly correlated with river runoff into the Baltic Sea. Long-term trends over the period 1950–2020 show a noticeable freshening of the upper layer in the whole Baltic Sea and a significant salinity increase below the halocline in some regions. A decadal variability was also identified in the deep layer of the Baltic Sea. This can be associated with variations in saltwater import from the North Sea, which in turn are influenced by river runoff: fewer strong saltwater inflows were observed in periods of enhanced river runoff. Furthermore, our results suggest that changes in wind speed have an impact on water exchange with the North Sea. Interannual variations of surface oxygen are strongly anti-correlated with those of SST. Likewise, the positive SST trends are accompanied by a decrease in surface oxygen. In greater depths of the Baltic Sea, oxygen decrease is stronger, which is partly related to the observed increase of the vertical salinity gradient.
Czasopismo
Rocznik
Tom
Strony
466--483
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
autor
- GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Bibliografia
- 1. Andersson, H.C., 2002. Influence of long-term regional and large-scale atmospheric circulation on the Baltic sea level. Tellus A 54, 76-88. https://doi.org/10.3402/tellusa.v54i1.12125
- 2. BACC I Author Team, 2008. Assessment of climate change for the Baltic Sea basin. Springer Science & Business Media. BACC II Author Team, 2015. Second assessment of climate change for the Baltic Sea Basin. Springer Open.
- 3. Bell, B., Hersbach, H., Simmons, A., Berrisford, P., Dahlgren, P., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Radu, R., Schepers, D., Soci, C., Villaume, S., Bidlot, J., Haimberger, L., Woollen, J., Buontempo, C., Thépaut, J., 2021. The ERA5 global reanalysis: Preliminary extension to 1950. Q. J. Roy. Meteor. Soc. 147, 4186-4227. https://doi.org/10.1002/qj.4174
- 4. Börgel, F., Frauen, C., Neumann, T., Schimanke, S., Meier, H.E.M., 2018. Impact of the Atlantic multidecadal oscillation on Baltic Sea variability. Geophys. Res. Lett. 45, 9880-9888.
- 5. Bradtke, K., Herman, A., Urbanski, J.A., 2010. Spatial and interannual variations of seasonal sea surface temperature patterns in the Baltic Sea. Oceanologia 52 (3), 345-362.
- 6. Bumke, K., Karger, U., Hasse, L., Niekamp, K., 1998. Evaporation over the Baltic Sea as an example of a semi-enclosed sea. Contrib. Atmos. Phys. 71 (2), 249-261.
- 7. Carstensen, J., Andersen, J.H., Gustafsson, B.G., Conley, D.J., 2014. Deoxygenation of the Baltic Sea during the last century. P. Natl. Acad. Sci. USA 111, 5628-5633. https://doi.org/10.1073/pnas.1323156111
- 8. Hänninen, J., Vuorinen, I., Hjelt, P., 2000. Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnol. Oceanogr. 45, 703-710.
- 9. HELCOM, 2009. Eutrophication in the Baltic Sea. Baltic Sea Environ. Proc. 115B, 1-148.
- 10. Hurrell, J.W., 1995. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 269 (5224), 676-679.
- 11. ICES, 2022. https://www.ices.dk/Pages/default.aspx (accessed on: 29 April 2022).
- 12. Janssen, F., 2002. Statistische Analyse mehrjähriger Variabilität der Hydrographie in Nord-und Ostsee. Univ. Hamburg, Institute of Oceanography.
- 13. Johansson, J., 2016. HELCOM Baltic Sea Environment Fact Sheet 2016 - Total and Regional Runoff to the Baltic Sea.
- 14. Jones, P.D., Jónsson, T., Wheeler, D., 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 17, 1433-1450.
- 15. Kniebusch, M., Meier, H.E.M., Neumann, T., Börgel, F., 2019a. Temperature Variability of the Baltic Sea Since 1850 and Attribution to Atmospheric Forcing Variables. J. Geophys. Res. Ocean. 124, 4168-4187. https://doi.org/10.1029/2018JC013948
- 16. Kniebusch, M., Meier, H.E.M., Radtke, H., 2019b. Changing Salinity Gradients in the Baltic Sea As a Consequence of Altered Freshwater Budgets. Geophys. Res. Lett. 46, 9739-9747. https://doi.org/10.1029/2019GL083902
- 17. Lehmann, A., Getzlaff, K., Harlaß, J., 2011. Detailed assessment of climate variability in the Baltic Sea area for the period 1958 to 2009. Clim. Res. 46, 185-196. https://doi.org/10.3354/cr00876
- 18. Lehmann, A., Hinrichsen, H.-H., 2000. On the thermohaline variability of the Baltic Sea. J. Marine Syst. 25, 333-357. https://doi.org/10.1016/S0924-7963(00)00026-9
- 19. Lehmann, A., Hinrichsen, H.-H., Getzlaff, K., Myrberg, K., 2014. Quantifying the heterogeneity of hypoxic and anoxic areas in the Baltic Sea by a simplified coupled hydrodynamic-oxygen consumption model approach. J. Marine Syst. 134, 20-28. https://doi.org/10.1016/j.jmarsys.2014.02.012
- 20. Lehmann, A., Höflich, K., Post, P., Myrberg, K., 2017. Pathways of deep cyclones associated with large volume changes (LVCs) and major Baltic inflows (MBIs). J. Marine Syst. 167, 11-18. https://doi.org/10.1016/j.jmarsys.2016.10.014
- 21. Lehmann, A., Krauss, W., Hinrichsen, H.-H., 2002. Effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Sea. Tellus A 54, 299-316. https://doi.org/10.1034/j.1600-0870.2002.00289.x
- 22. Lehmann, A., Myrberg, K., Post, P., Chubarenko, I., Dailidiene, I., Hinrichsen, H.-H., Hüssy, K., Liblik, T., Meier, H.E.M., Lips, U., Bukanova, T., 2022. Salinity dynamics of the Baltic Sea. Earth Syst. Dynam. 13, 373-392. https://doi.org/10.5194/esd-13-373-2022
- 23. Lehmann, A., Post, P., 2015. Variability of atmospheric circulation patterns associated with large volume changes of the Baltic Sea. Adv. Sci. Res. 12, 219-225. https://doi.org/10.5194/asr-12-219-2015
- 24. Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer, Berlin, Heidelberg. https://doi.org/10. 1007/978-3-540-79703-6
- 25. Liblik, T., Lips, U., 2017. Variability of pycnoclines in a three-layer, large estuary: the Gulf of Finland. Boreal Environ. Res. 22, 27-47.
- 26. Liblik, T., Lips, U., 2019. Stratification Has Strengthened in the Baltic Sea - An Analysis of 35 Years of Observational Data. Front. Earth Sci. 7, 174. https://doi.org/10.3389/feart.2019.00174
- 27. Liblik, T., Naumann, M., Alenius, P., Hansson, M., Lips, U., Nausch, G., Tuomi, L., Wesslander, K., Laanemets, J., Viktorsson, L., 2018. Propagation of Impact of the Recent Major Baltic Inflows From the Eastern Gotland Basin to the Gulf of Finland. Front. Mar. Sci. 5, 222. https://doi.org/10.3389/fmars.2018. 00222
- 28. MacKenzie, B.R., Schiedek, D., 2007. Daily ocean monitoring since the 1860s shows record warming of northern European seas. Glob. Change Biol. 13, 1335-1347. https://doi.org/10.1111/j.1365-2486.2007.01360.x
- 29. Matthäus, W., Schinke, H., 1999. The influence of river runoff on deep water conditions of the Baltic Sea. In: Biological, Physical and Geochemical Features of Enclosed and Semi-Enclosed Marine Systems. Springer, Dordrecht, 1-10. https://doi.org/10. 1007/978-94-017-0912-5_1
- 30. Meier, H.E.M., Kniebusch, M., Dieterich, C., Gröger, M., Zorita, E., Elmgren, R., Myrberg, K., Ahola, M.P., Bartosova, A., Bonsdorff, E., Börgel, F., Capell, R., Carlén, I., Carlund, T., Carstensen, J., Christensen, O.B., Dierschke, V., Frauen, C., Frederiksen, M., Gaget, E., Galatius, A., Haapala, J.J., Halkka, A., Hugelius, G., Hünicke, B., Jaagus, J., Jüssi, M., Käyhkö, J., Kirchner, N., Kjellström, E., Kulinski, K., Lehmann, A., Lindström, G., May, W., Miller, P.A., Mohrholz, V., Müller-Karulis, B., Pavón-Jordán, D., Quante, M., Reckermann, M., Rutgersson, A., Savchuk, O.P., Stendel, M., Tuomi, L., Viitasalo, M., Weisse, R., Zhang, W., 2022. Climate change in the Baltic Sea region: a summary. Earth Syst. Dynam. 13, 457-593. https://doi.org/10.5194/esd-13-457-2022
- 31. Meier, M., Kauker, F., 2003. Modeling decadal variability of the Baltic Sea: 2. Role of freshwater inflow and large-scale atmospheric circulation for salinity. J. Geophys. Res. 108, 3368. https://doi.org/10.1029/2003JC001799
- 32. Mohrholz, V., 2018. Major Baltic Inflow Statistics - Revised. Front. Mar. Sci. 5, 384. https://doi.org/10.3389/fmars.2018.00384
- 33. Neumann, T., Radtke, H., Seifert, T., 2017. On the importance of Major Baltic Inflows for oxygenation of the central Baltic Sea. J. Geophys. Res. Ocean. 122, 1090-1101. https://doi.org/10.1002/2016JC012525
- 34. Omstedt, A., Rutgersson, A., 2000. Closing the water and heat cycles of the Baltic Sea. Meteorol. Zeitschrift 9, 59-60.
- 35. Radtke, H., Brunnabend, S.-E., Gräwe, U., Meier, H.E., 2020. Investigating interdecadal salinity changes in the Baltic Sea in a 1850-2008 hindcast simulation. Clim. Past 16, 1617-1642.
- 36. Rudolph, C., Lehmann, A., 2006. A model-measurements comparison of atmospheric forcing and surface fluxes of the Baltic Sea. Oceanologia 48 (3), 333-380.
- 37. Rukšėnienė, V., Dailidienė, I., Kelpšaitė-Rimkienė, L., Soomere, T., 2017. Sea surface temperature variations in the south-eastern Baltic Sea in 1960-2015. Baltica 30, 75-85. https://doi.org/10.5200/baltica.2017.30.09
- 38. Stramska, M., Białogrodzka, J., 2015. Spatial and temporal variability of sea surface temperature in the Baltic Sea based on 32-years (1982—2013) of satellite data. Oceanologia 57 (3), 223-235. https://doi.org/10.1016/j.oceano.2015.04.004
- 39. Stoicescu, S-T., Lips, U., Liblik, T., 2019. Assessment of Eutrophication Status Based on Sub-Surface Oxygen Conditions in the Gulf of Finland (Baltic Sea). Front. Mar. Sci. 6, 54. https://doi.org/10.3389/fmars.2019.00054
- 40. Tinz, B., 1996. On the relation between annual maximum extent of ice cover in the Baltic Sea and sea level pressure as well as air temperature field. Geophysica 32, 319-341.
- 41. Tronin, A., 2017. The satellite-measured sea surface temperature change in the Gulf of Finland. Int. J. Remote Sens. 38, 1541- 1550. https://doi.org/10.1080/01431161.2017.1286057
- 42. Winsor, P., Rodhe, J., Omstedt, A., 2001. Baltic Sea ocean climate: an analysis of 100 yr of hydrographic data with focus on the freshwater budget. Clim. Res. 18, 5-15.
- 43. Zorita, E., Laine, A., 2000. Dependence of salinity and oxygen concentrations in the Baltic Sea on large-scale atmospheric circulation. Clim. Res. 14, 25-41. https://doi.org/10.3354/cr01402
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b3236e7-9d1a-4853-a06c-5c354603e8e9