PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the stress-strain state of the RC beam with the use of DIC

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the results of adapting the digital image correlation method for the possibility of diagnosing reinforced concrete structures. Reinforced concrete (RC) bending elements are the most widely used in construction practice, which determines the importance of reliable estimation of their stress-strain state. The purpose of this study includes reliable theoretical and experimental investigation of the strength and deformability parameters of the RC beam. The experimental study was conducted using digital image correlation and sub-micron contactless gauges. Experimental data was verified with the calculation of the stress-strain state of the RC beam according to DBN V.2.6-98:2009 and Eurocode 2 and the finite-element modelling (FEM). As a result, the values of deflections, concrete and rebar strains were obtained and presented as corresponding diagrams. The results of all the methods are within the same ranges. Also, the form and character of corresponding diagrams are very similar. The indicated deviations were within acceptable limits. It was noted that the theoretical calculation generally provides lower strain values, which is a satisfactory result, as it indicates the bearing capacity reserves provided by the current regulations. The propagation of cracks was monitored during the experiment and the measured cracks opening was compared with theoretical assumptions. Theoretical values are higher than experimental, which shows certain conservativity of valid normative regulations. The experimental and theoretical results were in good correspondence, which confirms their reliability. It was concluded, that the proposed in the study complex theoretic-experimental approach provides essential information about the strength and deformability of the structure
Rocznik
Strony
463--476
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
  • Lviv Polytechnic National University, Department of Highways and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
autor
  • Lviv Polytechnic National University, Department of Highways and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
  • Lviv Polytechnic National University, Department of Highways and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
  • Technical University of Kosice, Faculty of Civil Engineering, Institute of Architectural Engineering, 4 st. Vysokoškolská, 04200, Slovakia
  • Lviv Polytechnic National University, Department of Building Constructions and Bridges, 12 st. S. Bandera, Lviv, 79013, Ukraine
  • Czestochowa University of Technology, Faculty of Civil Engineering, 69 st. Dabrowskiego, 42-201 Czestochowa, Poland
Bibliografia
  • 1. ACI Committee 318, 2019. Building Code Requirements for Structural Con-crete (ACI 318-19) and Commentary (ACI 318R-19); American Concrete Institute: Farmington Hills, MI, USA, 623p.
  • 2. Adamczak-Bugno, A., Lipiec, S., Vavruš, M., Koteš, P., 2022. Non-Destruc-tive Methods and Numerical Analysis Used for Monitoring and Analysis of Fibre Concrete Deformations. Materials, 15, 7268. DOI: 10.3390/ma15207268
  • 3. Bischoff, P.H., 2005. Reevaluation of deflection prediction for concrete beams reinforced with steel and fiberreinforced polymer bars. J. Struct. Eng., 131, 752–767. DOI: 10.1061/(ASCE)0733-9445(2005)131:5(752)
  • 4. Blikharskyy, Y., Kopiika, N., Khmil, R., Selejdak, J., Blikharskyy Z., 2022. Review of Development and Application of Digital Image Correlation Method for Study of Stress–Strain State of RC Structures. Appl. Sci., 12, 10157. DOI: 10.3390/app121910157
  • 5. Blikharskyy, Y., Selejdak, J., 2021. Influence of the percentage of reinforcement damage on the bearingcapacity of RC beams. Construction of Optimized Energy Potential (CoOEP), 10(1), 145–150. DOI:10.17512/bozpe.2021.1.15
  • 6. Blikharskyy, Y., Selejdak, J., Kopiika, N., 2021a. Corrosion fatigue damages of rebars under loading in time. Materials, 14(12), 3416. DOI: 10.3390/ma14123416
  • 7. Blikharskyy, Y., Vashkevych, R., Kopiika, N., Bobalo, T., Blikharskyy, Z., 2021b. Calculation residual strength of reinforced concrete beams with damages, which occurred during loading. IOP Conf. Ser. Mater. Sci. Eng., 1021, 012012. DOI: 10.1088/1757-899X/1021/1/012012
  • 8. Blikharskyy, Z., Sobol, K., Markiv, T., Selejdak, J., 2021c. Properties of Con-cretes Incorporating Recycling Waste and Corrosion Susceptibility of Reinforcing Steel Bars. Materials, 14(10), 2638. https://doi.org/10.3390/ma14102638
  • 9. Bouzid, H., Rabia, B., Daouadji, T.H., 2021. Deflection ductility of RC beams under mid-span load. Structural Engineering and Mechanics, 80(5), 585-594. DOI: 10.12989/sem.2021.80.5.585
  • 10. Branson, D.E., 1965. Instantaneous and Time-Dependent Deflections on Sim-ple and Continuous Reinforced Concrete Beams. Alabama Highway Department, Bureau of Public Roads: Montgomery, AL, USA, HPR Report No. 7, Part 1, 1–78.
  • 11. Campione, G., Ferrotto, M.F., Papia, M., 2020. Flexural Response of RC Beams Failing in Shear. Pract. Period. Struct. Des. Constr., 25(4): 04020028. DOI: 10.1061/(ASCE)SC.1943-5576.0000507
  • 12. Chen, M.T., Ho, J.C.M., 2015. Concurrent flexural strength and ductility design of RC beams via straingradient-dependent concrete stress–strain curve. Struct. Design Tall Spec. Build. 24, 629–652. DOI: https://doi.org/10.1002/tal.1203
  • 13. Cintron, R., Saouma, V., 2008. Strain measurements with the digital image correlation system Vic-2D. Boulder, Colorado. Available online: https://smtl.colorado.edu/Technical_Documents/37_Strain_Measure-ments_with_the_Digital_Image_Correlation_System_Vic-2D.pdf (ac-cessed on 28 November, 2022).
  • 14. Cruz, H., Aval, S.F., Dhawan, K. Pourhomayoun, M., Rodriguez-Nik, T., Mazari, M., 2019. Non-Contact Surface Displacement Measurement for Concrete Samples Using Image Correlation Technique. In Proceedings of the 2019 International Conference on Image Processing, Computer Vision, & Pattern Recognition, Las Vegas, NV, USA, 29 July–1 August 2019; 151–156.
  • 15. Czajkowska, A., Raczkiewicz, W., Bacharz, M., Bacharz, K., 2020. Influence of maturing conditions of steel-fiber reinforced concrete on its selected parameters. Construction of Optimized Energy Potential (CoOEP), 9(1), 47-54. DOI: 10.17512/bozpe.2020.1.05
  • 16. Czajkowska, A., Raczkiewicz, W., Ingaldi, M., 2023. Determination of the linear correlation coefficient between Young’s modulus and the compressive strength in fibre-reinforced concrete based on experimental studies. Production Engineering Archives, 29(3), 288–297. DOI: 10.30657/pea.2023.29.33
  • 17. DBN V.2.6-98:2009. Structures of buildings and structures. Concrete and re-inforced concrete structures. General provisions. Kyiv, Ministry of Re-gional Development of Ukraine, 2011.
  • 18. Devendiran, D.K., Banerjee, S., 2023. Contribution of vertical ground motion on seismic response of multi-span simply-supported T-girder RC bridges in the presence of corrosion-fatigue degradation. Engineering Structures, 294, https://doi.org/10.1016/j.engstruct.2023.116720
  • 19. Dizaji, M.S., Harris, D.K., Kassner, B., Hill, J.C., 2021. Full-field non-de-structive image-based diagnostics of a structure using 3D digital image correlation and laser scanner techniques. J. Civ. Struct. Health Monit., 11, 1415–1428. DOI: 10.1007/s13349-021-00516-6
  • 20. Dorofeyev, V., Pushkar, N., 2023. The Bearing-Capacity of Precast Beams with Vertical Contact Plane. Lecture Notes in Civil Engineering, 290 LNCE, pp. 67–75. 10.1007/978-3-031-14141-6_7
  • 21. Dorofeyev, V., Pushkar, N., 2023. The Bearing-Capacity of Precast Beams with Vertical Contact Plane. Lecture Notes in Civil Engineering, 290 LNCE, pp. 67–75. 10.1007/978-3-031-14141-6_7
  • 22. DSTU B V.2.6-156:2010 Structures of buildings and structures. Concrete and reinforced concrete structures made of heavy concrete. Design rules. Kyiv, Ministry of Regional Development of Ukraine, 2011. 23.
  • 24. Eurocode 2: Design of concrete structures - Part 1-1 : General rules and rules for buildings, 2004.
  • 25. Haytham, B., Benferhat, R., Tahar, H. D., 2022. Estimation of ultimate de-flection of RC beams using CASTEM software. Conference Paper. Feb-ruary 2022. International Aegean Conferences. Innovation Technologies & Engineering-V. February 25-26, 2022. IZMIR, TURKEY
  • 26. Hu, H., Lopes, S.M.R., Lopes, A.V., Lou, T., 2022. Flexural Response of Ax-ially Restricted RC Beams: Numerical and Theoretical Study. Materials, 15, 6052. DOI: 10.3390/ma15176052
  • 27. Hunegnaw, C.B., Wondimu, T., 2021. Effect of orientation of stirrups in com-bination with shear span to depth ratio on shear capacity of RC beams, HELIYON, HLY 8193, S2405-8440(21)02296-9, 1-15. DOI: 10.1016/j.heliyon.2021.e08193
  • 28. Ilnytskyy, B.M., Kramarchuk, A.P., Bula, S.S., Bobalo, T.V., 2019. Study of the vibration influence on load-bearing floor structures in case of machin-ery operation. IOP Conference Series: Materials Science and Engineer-ing, 708(1), 012052. 10.1088/1757-899X/708/1/012052
  • 29. Jagusiak-Kocik, M., Ulewicz, R. 2023. Implementation of the QFD Method in a Construction Industry Company. Lecture Notes in Civil Engineering, 290 LNCE, 416–423. https://doi.org/10.1007/978-3-031-14141-6_42
  • 30. Katunský, D., Katunská, J., Tóth, S., 2015. Possibility of choices industrial hall object reconstruction. International Multidisciplinary Scientific Ge-oConference Surveying Geology and Mining Ecology Management, SGEM, 2(5), 389–396.
  • 31. Kim, S.-W., 2021. Prediction of Deflection of Shear-Critical RC Beams Using Compatibility-Aided Truss Model. Appl. Sci., 11, 11478. DOI: 10.3390/app112311478
  • 32. Kopiika, N., Selejdak, J., Blikharskyy, Y., 2022. Specifics of physico-me-chanical characteristics of thermally-hardened rebar. Prod. Eng. Arch., 28, 73–81. DOI:10.30657/pea.2022.28.09
  • 33. Kopiika N., Vegera P., Vashkevych R., Blikharskyy Z. 2021. Stress-strain state of damaged reinforced concrete bended elements at operational load level. Prod. Eng. Arch., 27, 242-247. DOI: 10.30657/pea.2021.27.32
  • 34. Kos, Z., Klymenko, Y., Karpiuk, I., Grynyova, I., 2022. Bearing Capacity near Support Areas of Continuous Reinforced Concrete Beams and High Grillages. Appl. Sci., 12, 685. DOI:10.3390/app12020685
  • 35. Koteš, P., Kotula, P., Odrobiňák J., Prokop, J., 2022. Diagnostics and Evalu-ation of Two Atypical Girder Bridges on Railway Line. Key Engineer-ing Materials, August 2022. DOI:10.4028/p-i418x0
  • 36. Koteš, P., Zahuranec, M., Vavruš, M., 2023. Diagnostic and Design of Re-construction of Building Váhostav. Lecture Notes in Civil Engineering, 322 LNCE, pp. 165–174. 10.1007/978-3-031-26879-3_13
  • 37. Kramarchuk, A., Ilnytskyy, B., Kopiika, N., 2023. Ensuring the Load-Bearing Capacity of Monolithic Reinforced Concrete Slab Damaged by Cracks in the Compressed Zone. EcoComfort, LNCE 290, 1–13, 2023. DOI: 10.1007/978-3-031-14141-6_21
  • 38. Kramarchuk, A., Ilnytskyy, B., Lytvyniak, O., 2018. Arrangement of the foundations under the new hotel in Lviv. Matec Web of Conferences, 183, 139366. 10.1051/matecconf/201818302007.
  • 39. Kramarchuk, A., Ilnytskyy, B., Hladyshev, D., Lytvyniak, O., 2021. Strengthening of the reinforced concrete tank of anaerobic purification plants with the manufacture of biogas, damaged as a result of design and construction errors. IOP Conference Series: Materials Science and Engi-neering, 1021(1), 012017. DOI: 10.1088/1757-899X/1021/1/012017
  • 40. Lenkovskiy, T.M., Kulyk, V.V., Duriagina, Z.A., Kovalchuk, R.A., Topilny-tskyy, V.H., Vira, V.V., Tepla, T.L., 2017. Mode I and mode II fatigue crack growth resistance characteristics of high tempered 65G steel. Ar-chives of Materials Science and Engineering, 84(1), 34–41. DOI: 10.5604/01.3001.0010.3029
  • 41. Li, B., Zeng, L., Guo, X., Wang, Y., Deng, Z. 2022a. Flexural Behavior of Full-Scale Damaged Hollow RC Beams Strengthened with Prestressed SCFRP Plate under Four-Point Bending. Polymers, 14, 2939. DOI: 10.3390/polym14142939
  • 42. Li, W., Huang, W., Fang, Y., Zhang, K., Zongzhi, Liu, Kong, Z., 2022b. Ex-perimental and theoretical analysis on shear behavior of RC beams rein-forced with GFRP stirrups, Structures 46, 1753–1763. DOI: 10.1016/j.istruc.2022.10.138
  • 43. Li, W., Huang, Y., Jiang, Y., Shi, T., Xing, F., 2020. Application of DIC Technology to Shear Crack Measurement of Concrete Beam. In Ad-vances in 3D Image and Graphics Representation, Analysis, Computing and Information Technology: Algorithms and Applications, Proceedings of IC3DIT; Springer: Berlin/Heidelberg, Germany, 180, 339–346. DOI: 10.1007/978-981-15-3867-4_39
  • 44. Lipiński, T., 2023. The Role of the Distance between Fine Non-Metallic Ox-ide Inclusions on the Fatigue Strength of Low-Carbon Steel. Applied Sci-ences (Switzerland), 13(14), 8354. 10.3390/app13148354
  • 45. Lipiński, T., Ulewicz, R. 2023. Degradation of R35 Steel in 5% NaCl envi-ronment at 10°C. Materials Research Proceedings, 34, pp. 77–86. 10.21741/9781644902691-10
  • 46. Lipiński, T., Wach, A., 2020. Influence of inclusions on bending fatigue strength coefficient the medium carbon steel melted in an electric fur-nace. Production Engineering Archives, 26(3), pp. 88–91. 10.30657/pea.2020.26.18
  • 47. Malíková, L., Miarka, P., Šimonová, H., Kucharczyková, B., 2020. Deflection of an eccentric crack under mixed-mode conditions in an SCB specimen. Construction of Optimized Energy Potential (CoOEP), 9(2), 79-87. DOI: 10.17512/bozpe.2020.2.09
  • 48. Niezrecki, C., Baqersad, J., Sabato, A., 2018. Digital Image Correlation Tech-niques for Non-Destructive Evaluation and Structural Health Monitoring. Handb. Adv. Non-Destr. Eval., 1–46. Available online: https://cpb-us-w2.wpmucdn.com/sites.uml.edu/dist/3/262/files/2019/09/Niezrecki-er-al.-2019-Digital-image-correlation-techniques-for-NDE-and-SHM.pdf (accessed on 21 November, 2022).
  • 49. Ostash, O.P., Muravs'Kyi, L.I., Voronyak, T.I., Kmet', A.B., Andreiko, I.M., Vira, V.V., 2011. Determination of the size of the fatigue prefrac-ture zone by the method of phase-shifting interferometry. Materials Sci-ence, 46(6), 781–788. DOI:10.1007/s11003-011-9353-1
  • 50. Ostash, О.P., Kulyk, V.V., Poznyakov, V.D., Gaivorons’kyi, О.А., Vira, V.V., 2019. Influence of the Modes of Heat Treatment on the Strength and Cyclic Crack-Growth Resistance of 65G Steel. Materials Science, 54(6), pp. 776–782. DOI: 10.1007/s11003-019-00263-6
  • 51. Pang, M., Shi, S., Hu, H., Lou, T., 2021. Flexural Behavior of Two-Span Con-tinuous CFRP RC Beams. Materials, 14, 6746. DOI: 10.3390/ma14226746
  • 52. Scanlon, A., Bischoff, P.H., 2008.Shrinkage restraint and loading history ef-fects on deflections of flexural members. ACI Struct. J., 105(4), 498–506.
  • 53. Schreier, H., Orteu, J.J., Sutton, M.A., 2009. Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts, Theory and Applications; Springer Science & Business Media: New York, NY, USA, 2009; 322p.
  • 54. Semko, O., Filonenko, O., Yurin, O., Avramenko, Y., Mahas, N., 2023. Char-acteristic damages of reinforced concrete structures of the covering ex-posed to moisture. AIP Conference Proceedings, 2684, 030039. DOI: 10.1063/5.0120020
  • 55. Sengun, K., Arslan, G., 2022. Investigation of the parameters affecting the behavior of RC beams strengthened with FRP. Front. Struct. Civ. Eng. 16, 729–743. DOI: 10.1007/s11709-022-0854-9.
  • 56. Sharma, G., Sharma, S., Sharma, S.K., 2021. Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques. Struc-tural Engineering and Mechanics, 77(5), 637-650 DOI: 10.12989/sem.2021.77.5.637
  • 57. Song, L., Wang, L., Sun, H., Cui, C., Yu, Z., 2022. Fatigue Performance Pre-diction of RC Beams Based on Optimized Machine Learning Technol-ogy. Materials, 15, 6349. DOI: 10.3390/ma15186349.
  • 58. Speckle Pattern Fundamentals. Correlated Solutions, Inc. Knowledgebase Technical Articles, 2021. 12p. Available online: https://corre-lated.kayako.com/article/38-speckle-pattern-fundamentals (accessed on 20 November, 2022).
  • 59. Ulewicz, R., Novy, F., Selejdak, J. 2013. Fatigue strength of ductile iron in ultra-high cycle regime, Advanced Materials Research, 874, 43-48, DOI: 10.4028/www.scientific.net/amr.874.43
  • 60. Vatulia, G.L., Smolyanyuk, N.V., Shevchenko, A.A., Orel, Y.F., Kovalov, M.O., 2020. Evaluation of the load-bearing capacity of variously shaped steel-concrete slabs under short term loading. IOP Conference Series: Materials Science and Engineering, 1002(1), 012007. DOI: 10.1088/1757-899X/1002/1/012007
  • 61. Vitaliy, D., Natalia, P., Hanna, Z., 2021. The Influence of Concrete Structure on the Destruction of Reinforced Concrete Bended Elements. Lecture Notes in Civil Engineering, 100 LNCE, 103–111. DOI: 10.1007/978-3-030-57340-9_13
  • 62. Voznyak, O., Kaplun, V., Spodyniuk, Dudkiewicz, E., Dovbush, O., Su-kholova, I., Kasynets, M., 2023. Efficiency enhancing of the local capture hood due to air barriers. Pollack Periodica, 18(3), 58–64. DOI: 10.1556/606.2023.00851
  • 63. Yang, Z., Cheng, Z., Wang T., Sun, Y., Wang, Ch., Qu, J., Zhang, D., Li, Q., 2021. Study on the Optimal Prestress Level of RC Beams Reinforced with SMA Bars. Advances in Civil Engineering, 2021, 4545413, 1-12. DOI: 10.1155/2021/4545413
  • 64. Yuan, P., Xiao, L., Wang, X., Xu, G., 2021. Failure Mechanism of Corroded RC Beams Strengthened at Shear and Bending Positions. Engineering Structures, 240, 112382. DOI: 10.1016/j.engstruct.2021.112382
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b2d9c30-0fe0-43b0-8015-98e2ccfe409f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.