PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Data driven score tests for univariate symmetry based on non-smooth functions

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose data driven score rank tests for univariate symmetry around a known center based on non-smooth functions. A choice of non-smooth functions is motivated by very special properties of a certain function on [0; 1] determined by a distribution which is responsible for its asymmetry. We modify recently introduced data driven penalty selection rules and apply Schwarz-type penalty as well. We prove basic asymptotic results for the test statistics. In a simulation study we compare the empirical behavior of the new tests with the data driven tests based on the Legendre basis and with the so-called hybrid test. We show good power behavior of the new tests often overcoming their competitors.
Rocznik
Strony
301--322
Opis fizyczny
Bibliogr. 23 poz., tab., wykr.
Twórcy
  • Institute of Mathematics and Computer Science, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] J. Arbuthnot, An argument for divine providence, taken from the constant regularity observed in the births of both sexes, Philos. Trans. R. Soc. Lond. 27 (1710), pp. 186-190.
  • [2] J. Bai and S. Ng, Tests for skewness, kurtosis, and normality for time series data, J. Bus. Econom. Statist. 23 (2005), pp. 49-60.
  • [3] A. Bakshaev, Nonparametric tests based on N-distances, Lituanian Math. J. 48 (2008), pp. 368-379.
  • [4] D. Cassart, M. Hallin, and D. Paindaveine, Optimal detection on Fechner-asymmetry, J. Statist. Plann. Inference 138 (2008), pp. 2499-2525.
  • [5] W.-H. Cheng and N. Balakrishnan, A modified sign test for symmetry, Comm. Statist. Simulation Comput. 33 (2004), pp. 703-709.
  • [6] J. Fan, Test of significance based on wavelet thresholding and Neyman’s truncation, J. Amer. Statist. Assoc. 91 (1996), pp. 674-688.
  • [7] M. Freimer, G. Kollia, G. S. Mudholkar, and C. T. Lin, A study of the generalized Tukey lambda family, Comm. Statist. Theory Methods 17 (1988), pp. 3547-3567.
  • [8] J. Hájek, Z. Šidák, and P. K. Sen, Theory of Rank Tests, Academic Press, 1999.
  • [9] T. Inglot and A. Janic, How powerful are data driven score tests for uniformity, Appl. Math. (Warsaw) 36 (2009), pp. 375-395.
  • [10] T. Inglot, A. Janic, and J. Józefczyk, Data driven rank test for univariate symmetry. Simulation results, Technical Report No. 30/2010, Institute of Mathematics and Computer Science, Wrocław University of Technology, 2010.
  • [11] T. Inglot, A. Janic, and J. Józefczyk, Data driven tests for univariate symmetry, this volume, pp. 323-358.
  • [12] A. Janic-Wróblewska, Data driven rank test for univariate symmetry, Technical Report No. I18/98/P-020, Institute of Mathematics, Wrocław University of Technology, 1998.
  • [13] M. C. Jones and A. Pewsey, Sinh-arcsinh distributions, Biometrika 96 (2009), pp. 761-780.
  • [14] W. C. M. Kallenberg and T. Ledwina, Data driven smooth tests when the hypothesis is composite, J. Amer. Statist. Assoc. 92 (1997), pp. 1094-1104.
  • [15] T. P. McWilliams, A distribution-free test for symmetry based on a runs statistics, J. Amer. Statist. Assoc. 85 (1990), pp. 1130-1133.
  • [16] R. Modarres and J. L. Gastwirth, A modified runs test for symmetry, Statist. Probab. Lett. 31 (1996), pp. 107-112.
  • [17] R. Modarres and J. L. Gastwirth, Hybrid test for the hypothesis of symmetry, J. Appl. Stat. 25 (1998), pp. 777-783.
  • [18] J. Neyman, ‘Smooth test’ for goodness of fit, Skand. Aktuarietidskr. 20 (1937), pp. 149-199.
  • [19] G. Premaratne and A. Bera, A test for symmetry with leptokurtic financial data, J. Financial Econometrics 3 (2005), pp. 169-187.
  • [20] G. Schwarz, Estimating the dimension of a model, Ann. Statist. 6 (1978), pp. 461-464.
  • [21] I. Tajuddin, Distribution-free test for symmetry based on Wilcoxon two-sample test, J. Appl. Stat. 21 (1994), pp. 409-415.
  • [22] O. Thas, J. C. W. Rayner, and D. J. Best, Tests for symmetry based on the one-sample Wilcoxon signed rank statistic, Comm. Statist. Simulation Comput. 34 (2005), pp. 957-973.
  • [23] T. Zheng and J. Gastwirth, On bootstrap tests of symmetry about an unknown median, J. Data Science 8 (2010), pp. 397-412.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b2591a2-bb44-4b12-b955-16af3d40266d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.