Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
This study investigated the impact of two different heating rates (10 and 20 °C/min) on the thermal characteristics of three specific polymers: high-density polyethylene (HDPE), polypropylene (PP) and polyvinylchloride (PVC). A twin-screw extruder was employed to prepare the samples. In order to examine the influence of heating rate, differential scanning calorimetry (DSC) was used. The results of the differential scanning calorimetry (DSC) analysis, including the glass transition temperature (Tg), melting temperature (Tm), enthalpy change (ΔHm) and crystallization temperature (Tc), indicate that the melting temperature and enthalpy drops for polyethylene (PE), polypropylene (PP) and polyvinyl chloride (PVC) when the heating rate increases. Furthermore, there is a minor alteration in the Tc . These studies are also of significant importance for the future of construction, which increasingly emphasizes
Rocznik
Tom
Strony
71--77
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
- University of Babylon, Iraq
autor
- University of Babylon, Iraq
autor
- University of Babylon, Iraq
autor
- University of Babylon, Iraq
autor
- Czestochowa University of Technology, Poland
Bibliografia
- 1. Abu-Bakar, A.S., Cran, M.J., & Moinuddin, K.A.M. (2019) Experimental investigation of effects of variation in heating rate, temperature and heat flux on fire properties of a non-charring polymer. Journal of Thermal Analysis and Calorimetry, 137, 447-459.
- 2. Al-Mutairi, N.H., Al-Zubiedy, A., & Al-Zuhairi, A.J. (2023) Preparation and characterization of a novel hyperbranched polyester polymers using A2+B3 monomers. Production Engineering Archives, 29(1),28-36.
- 3. Al-Mutairi, N.H., Al-Zubiedy, A., & Al-Zuhairi, A.J. (2022) Hyperbranched polyester polymer preparation and study its effect on some properties of polypropylene. Egyptian Journal of Chemistry, 65(8), 35-43
- 4. Chrostek, T. (2016) The influence of the heating and cooling rates on the temperature of the phase transitions. In: Technical Aspects of Materials Quality. Oficyna Wydawnicza Stowarzyszenia Menedżerów Jakości i Produkcji, 87-98.
- 5. Gonzalez-Aguilar, A.M., Cabrera-Madera, V.P., Vera-Rozo, J.R., & Riesco-Avila, J.M. (2022) Effects of heating rate and temperature on the thermal pyrolysis of expanded polystyrene post-industrial waste. Polymers, 14(22), 4957.
- 6. Guimaraes Jaques, N., Silva, I.D., Barbosa Neto, M.C., & Ries, A. (2018) Effect of heat cycling on melting and crystallization of PHB/TiO2 compounds. Polimeros, 28(2), 161-168.
- 7. Hameed, M.G., Kadhim, B.J., Jura, J., Mehdi, A.H., & Al-Mutairi, N.H. (2023) Strain rate effect on the mechanical properties of thermoplastic polyolefin. Construction of Optimized Energy Potential /Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 12(1), 209-216.
- 8. Helbrych, P. (2021) Effect of dosing with propylene fibers on the mechanical properties of concretes. Construction of Optimized Energy Potential / Budownictwo o Zoptymalizowanym Potencjale Energetycznym, 10(2), 39-44.
- 9. Lamri, A., Shirinbayan, M., Pereira, M., Truffault, L., Fitoussi, J., Lamouri, S., Bakir, F., & Tcharkhtchi, A. (2020) Effects of strain rate and temperature on the mechanical behavior of high‐density polyethylene. Journal of Applied Polymer Science, 137(23), 48778.
- 10. Mark, J.E. (2007) Physical Properties of Polymers, Handbook (Vol. 1076). Springer. Nik Hassan, N.R., Ismail, N.M., Ghazali, S., & Nuruzzaman, D.M. (2018) Thermal properties of polyethylene reinforced with recycled-poly (ethylene terephthalate) flakes. IOP Conference Series: Materials Science and Engineering, 342, 12094.
- 11. Poulose, A.M., Piccarolo, S., Carbone, D., & Al‐Zahrani, S.M. (2016) Influence of plasticizers and cryogenic grinding on the high‐cooling‐rate solidification behavior of PBT/PET blends. Journal of Applied Polymer Science, 133(10), 43083.
- 12. Thomas, L.C. (2001) Use of multiple heating rate DSC and modulated temperature DSC to detect and analyze temperature-time-dependent transitions in materials. American Laboratory, 33(1), 26-31.
- 13. Toda, A. (2016) Heating rate dependence of melting peak temperature examined by DSC of heat flux type. Journal of Thermal Analysis and Calorimetry, 123(3), 1795-1808.
- 14. Wang, G., & Harrison, I.R. (1994) Polymer melting: heating rate effects on DSC melting peaks. Thermochimica Acta, 231, 203-213.
- 15. Wellen, R.M.R., Canedo, E.L., & Rabello, M.S. (2015) Melting and crystallization of poly(3-hydroxybutyrate)/carbon black compounds. Effect of heating and cooling cycles on phase transition. Journal of Materials Research, 30, 21, 3211-3226, DOI: 10.1557/jmr.2015.287.
- 16. Zhang, W., Jia, J., Ding, Y., Jiang, G., Sun, L., & Lu, K. (2022). Effects of heating rate on thermal degradation behavior and kinetics of representative thermoplastic wastes. Journal of Environmental Management, 314, 115071.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Identyfikator YADDA
bwmeta1.element.baztech-5b1ef363-979b-4864-83cb-0f3a82b3ab2f