PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low atmospheric density measurement based on Rayleigh scattering of an ultraviolet laser

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The qualitative measurement of low atmospheric density in the air flow field has been investigated in this paper. The supersonic flow field with Mach number of 1.5 around the NACA0006 aerofoil has been numerically simulated and the transient slight pressure and low density atmosphere have been experimentally determined based on Rayleigh scattering of a 266 nm ultraviolet laser. The scattering patterns have been effectively captured under different atmospheric pressure of 4.5, 92, 470 and 710 Pa with laser energy of only 0.5 mJ. It has been demonstrated that in the pressure range from 4.5 to 1100 Pa, corresponding to the atmospheric density from 4.8105×10–5 kg/m3 to 1.279×10–2 kg/m3, the scattering intensity of an ultraviolet laser is linear to the pressure and density with the slope coefficient of 0.00968 a.u./Pa and 0.83226 a.u./(kg/m3×10–3). It has been proved that Rayleigh scattering is a promising technology for observation of instantaneous and multidimensional distribution of a supersonic flow field.
Czasopismo
Rocznik
Strony
597--605
Opis fizyczny
Bibliogr. 18 poz., rys., tab., wykr.
Twórcy
autor
  • College of Precision Instruments and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin, 300072, China
  • Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China
autor
  • Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China
autor
  • Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China
autor
  • College of Precision Instruments and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin, 300072, China
  • Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China
  • School of Electronics Information Engineering, Tianjin Key Laboratory of Film Electronic and Communication Device, Tianjin University of Technology, Tianjin 300384, China
autor
  • College of Precision Instruments and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin, 300072, China
  • Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China
autor
  • College of Precision Instruments and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin, 300072, China
  • Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China
autor
  • College of Precision Instruments and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin, 300072, China
  • Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China
autor
  • College of Precision Instruments and Opto-electronics Engineering, Institute of Laser and Opto-electronics, Tianjin University, Tianjin, 300072, China
  • Key Laboratory of Opto-electronics Information Technology (Tianjin University), Ministry of Education, Tianjin, 300072, China
Bibliografia
  • [1] MOSS J., PRICE J., Survey of blunt body flows including wakes at hypersonic low-density conditions, Journal of Thermophysics and Heat Transfer 11(3), 1997, pp. 321–329.
  • [2] DREIZLER A., JANICKA J., Applied Combustion Diagnostics, Taylor & Francis, 2002, pp. 561–586.
  • [3] MCINTYRE T., KLEINE H., HOUWING A., Optical imaging techniques for hypersonic impulse facilities, Aeronautical Journal 111(1115), 2007, pp. 1–16.
  • [4] CANDEL S., HERDING G., SYNDER R., SCOUFLAIRE P., ROLON C., VINGERT L., HABIBALLAH M., GRISCH F., PÉ M., BOUCHARDY P., STEPOWSKI D., CESSOU A., COLIN P., Experimental investigation of shear coaxial cryogenic jet flames, Journal of Propulsion and Power 14(5), 1998, pp. 826–834.
  • [5] ESTRUCH D., LAWSON N., GARRY K., Application of optical measurement techniques to supersonic and hypersonic aerospace flows, Journal of Aerospace Engineering 22(4), 2009, pp. 383–395.
  • [6] MARTÍNEZ-GONZÁLEZ A., GUERRERO-VIRAMONTES J.A., MORENO-HERNÁNDEZ D., Temperature and velocity measurement fields of fluids using a schlieren system, Applied Optics 51(16), 2012, pp. 3519–3525.
  • [7] DU PLESSIS A., ROHWER E., STEENKAMP C., Investigation of four carbon monoxide isotopomers in natural abundance by laser-induced fluorescence in a supersonic jet, Journal of Molecular Spectroscopy 243(2), 2007, pp. 124–133.
  • [8] AHMED S., Scalar dissipation rate statistics in turbulent flows using planar laser induced fluorescence measurements, International Journal of Heat and Fluid Flow 33(1),2012, pp. 220–231.
  • [9] BALLA R., EXTON R., Density measurements in air by optically exciting the Cordes bands of I2, Measurement Science and Technology 11(5), 2000, pp. 459–466.
  • [10] KLIEWER C., High-spatial-resolution one-dimensional rotational coherent anti-Stokes Raman spectroscopy imaging using counterpropagating beams, Optics Letters 37(2), 2012, pp. 229–231.
  • [11] MILES R., GRINSTEAD J., KOHL R., DISKIN G., The RELIEF flow tagging technique and its application in engine testing facilities and for helium-air mixing studies, Measurement Science and Technology 11(9), 2000, pp. 1272–1281.
  • [12] DAM N.J., RODENBURG M., TOLBOOM R.A.L., STOFFELS G.G.M., HUISMAN-KLEINHERENBRINK P.M., TER MEULEN J.J., Imaging of an underexpanded nozzle flow by UV laser Rayleigh scattering, Experiments in Fluids 24(2), 1998, pp. 93–101.
  • [13] MILES R., LEMPERT W., Two-dimensional measurement of density, velocity, and temperature in turbulent high-speed air flows by UV Rayleigh scattering, Applied Physics B: Lasers and Optics 51(1), 1990, pp. 1–7.
  • [14] ELLIOTT G., GLUMAC N., CARTER C., Molecular filtered Rayleigh scattering applied to combustion, Measurement Science and Technology 12(4), 2001, pp. 452–466.
  • [15] NEWTON R., Scattering Theory of Waves and Particles, Dover Publications, 2002, pp. 54–57.
  • [16] LIPSON A., LIPSON S., LIPSON H., Optical Physics, Cambridge University Press, 2010, pp. 384–388.
  • [17] http://en.wikipedia.org/wiki/Rayleigh_scattering
  • [18] http://en.wikipedia.org/wiki/Air_foil
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b1cdd30-f535-4ae8-842a-66671625ec1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.