PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Preliminary sub-systems design integrated in a multidisciplinary design optimization framework

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Projekt wstępny podsystemów w ramach optymalizacji multidyscyplinarnej
Języki publikacji
EN
Abstrakty
EN
The aircraft design is a complex subject since several and completely different design disciplines are involved in the project. Many efforts are made to harmonize and optimize the design trying to combine all disciplines together at the same level of detail. Within the ongoing AGILE (Horizon 2020) research, an aircraft MDO (Multidisciplinary Design Optimization) process is setting up connecting several design tools and competences together. Each tool covers a different design discipline such as aerodynamics, structure, propulsion and systems. This paper focuses on the integration of the sub-system design discipline with the others in order to obtain a complete and optimized aircraft preliminary design. All design parameters used to integrate the sub-system branch with the others are discussed as for their redefinition within the different detail level of the design.
PL
Projektowanie samolotówjest tematem złożonym i z jednym z powodów, dla których istnieje kilka zupełnie różnych dyscyplin dizajnerskich zaangażowanych w ten projekt. Czynionych jest wiele prób w celu optymalizacji tego projektu próbującego rozważyć wszystkie dyscypliny razem na tym samym poziomie uszczegółowienia. Wraz ze zbliżającym się badaniem H2020 AGILE, proces MDO (Mulidyscyplinarnej Optymalizacji Projektowania) będzie zaczęty i połączy on kilka narzędzi projektowych i kompetencji razem. Każde narzędzie obejmuje inną dziedzinę projektowania taką jak: aerodynamika, struktura, napędy i systemy. The artykuł koncentruje się na integracji podsystemów dyscyplin projektowych z innymi celem uzyskania completnych i zoptymalizowanych wstępnych projektów samolotów. Wszystkie parametry projektowania użyte do zintegrowania podsystemowych gałęzi z innymi są przedyskutowane jako ich redefinicja z różnymi poziomami detalu projektu.
Rocznik
Strony
9--23
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi n.24, Turin, Italy
autor
  • Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi n.24, Turin, Italy
autor
  • Department of Mechanical and Aerospace Engineering, Politecnico di Torino, C.so Duca degli Abruzzi n.24, Turin, Italy
Bibliografia
  • [1] Liersch, C. M., Hepperle M. 2011, “A distributed toolbox for multidisciplinary preliminary aircraft design”, CEAS Aeronautical Journal, pp. 57-68, 2011.
  • [2] “AGILE - Aircraft 3rd Generation MDO for Innovative Collaboration of Heterogeneous Teams of Experts“, [Online]. Available: http://www.agile-project.eu/.
  • [3] “SimSAC project flyer,” [Online]. Available: http://www.transport-research.info/sites/default/files/project/documents/20120921_105849_29226_SimSAC-Flyer.pdf.
  • [4] Kesseler E., Guenov M., 2010, “Advances in Collaborative Civil Aeronautical Multidisciplinary Design Optimization”, American Institute of Aeronautics and Astronautics.
  • [5] Baalbergen E., Kanakis A., Vankan W., 2009, “A practical approach for coordination of multi-partner engineering jobs in the design of small aircraft”, CESAR Special Issue of Journal Czech Aerospace Proceedings, vol. 3.
  • [6] Coleman P., 2012, “Innovations in collaborative modelling and simulation to deliver the Behavioural Digital Aircraft, CRESCENDO Forum Participants Handbook”, Toulouse.
  • [7] TOICA Consortium, “EU FP7 TOICA Project public web page”, [Online]. Available: http://www.toica-fp7.eu/.
  • [8] Sobieszczanski-Sobieski, J., 1995, “Multidisciplinary Design Optimization: An Emerging New Engineering Discipline”, Advances in Structural Optimization, pp. 483-496.
  • [9] Martins, J. R., Lambe, A. B., 2013, “Multidisciplinary Design Optimization: A Survey of Architectures”, AIAA Journal, 9(51), pp. 2049-2075.
  • [10] Liscouët-Hanke, S., 2008, “A Model-Based Methodology for Integrated Preliminary Sizing and Analysis of Aircraft Power System Architectures”, Doctoral Thesis.
  • [11] Scholz, D., 2009, “Aircraft Systems Overview - Greening of Secondary Power Systems”, SWAFEA - Sustainable Way for Alternative Fuels and Energy for Aviation, Brussels, Belgium, 23-24 April 2009.
  • [12] Scholz, D., 2002, “Aircraft Systems - Reliability, Mass, Power and Costs”, EWADE.
  • [13] Chakraborty, I., Mavris, D. N., 2016, “Integrated Assessment of Aircraft and Novel Subsystem Architectures in Early Design”, AIAA SciTech.
  • [14] Martins Pires, R. M., Lajux, V., Fielding, J. P., 2016, “Methodology for the design and evaluation of wing leading edge and trailing edge devices”, ICAS, Hamburg, Germany.
  • [15] Raymer, D. P., 2012, “Aircraft Design: A Conceptual Approach (5thEdition)“, American Institute of Aeronautics and Astronautics, Washington, DC.
  • [16] Roskam, J., 2003, “Airplane Design Part I: Preliminary Sizing of Airplanes (2nd Edition)“, DARcorporation, Lawrence, KS.
  • [17] Torenbeek, E., 1976, “Synthesis of subsonic airplane design“, Nijgh-Wolters-Noordhoff, Rotterdam.
  • [18] Fioriti, M., 2014, “Adaptable conceptual aircraft design model”, Advances In Aircraft and Spacecraft Science, vol. 1, pp. 43-67.
  • [19] Rosero, J. A., Ortega, J. A., Aldabas, E., 2007, “Moving towards a more electric aircraft”, IEEE Aerospace and Electronic Systems Magazine, vol. 22, n. 3, pp. 3-9.
  • [20] Jones, R. I., 2002, “The more electric aircraft - assessing the benefits”, Proceedings of the Institution of Mechanical Engineers, Part G Journal of Aerospace Engineering, vol. 216, pp. 259-269.
  • [21] Berlowitz, I., 2010, “All/More Electric Aircraft Engine & Airframe Systems Implementation”, The 9th Israeli Symposium on Jet Engines and Gas Turbines.
  • [22] Heney, P. J., 2002, “A380 pushes 5000 psi into realm of the common man”, Hydraulics & Pneumatics.
  • [23] Longxian, X., 2009, “Actuation technology for Flight Control System - Master Thesis”, Cranfield University.
  • [24] Van Den Bossche, D., 2006, “The A380 flight control electrohydrostatic actuators, achievements and lessons learnt”, ICAS, Hamburg, Germany.
  • [25] Tagge, G. E., Irish L. A., Bailey, A. R., 1985, “Systems Study for an Integrated Digital/Electric Aircraft (IDEA)”, NASA Contractor Report 3840, Hampton (VA).
  • [26] Sinnet, M., 2007, “787 No-Bleed Systems: Saving Fuel and Enhancing Operational Efficiencies”, Aero Quarterly QTR_04 | 07, 06-11.
  • [27] Mecham, M., 2005, “Boeing 787 Technology. Evolution and revolution”, Aviation week & Space technology, vol. 162, n. 13, pp. 46-50.
  • [28] Baird, F., 2015, “Dreamliner Cabin Pressure Tech Reduces Altitude Sickness, Benefits PaxEx”, Airline passenger experience, apex association.
  • [29] Meier O. e Scholz D., 2010, “A handbook method for the estimation of power requirements for electrical de-icing systems”, Aero - Aircraft Design and Systems Group.
  • [30] Ciampa, P. D., Nagel, B., 2016, “Towards the 3rd generation MDO collaborative environment”, ICAS.
Uwagi
EN
This work is carried out within AGILE H2020 European research project [2] of which, one of the main purposes is the employment of MDO techniques to enhance the project competitiveness of standard and innovative aircraft configurations.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b1c99b5-9974-438b-89f7-4e04fe4db987
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.