Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cadmium (Cd) toxicity is an alarming issue for our agricultural soils and serious threat to crop productivity. The concentration of Cd in our soils is continuously increasing which is posing serious threat to plants, animals and humans. Mung bean is a conventional pulse crop cultivated all over the world. Thus, this study’s goal was to evaluate response of mung bean seedlings in terms of growth, physiology, and biochemistry to varying degrees of Cd stress. The investigation examined various Cd levels, including control, 5, 10 and 15 mg Cd/kg of soil. The results indicate that mungbean growth, physiological and biochemical components was negatively impacted by Cd stress. Results depicted that Cd (15 mg/kg) reduced the growth attributes photosynthetic pigments (Chl. a, b and carotenoids), total soluble proteins (TSP) and free amino acids (FAA) and increased the malondialdehyde (MDA), hydrogen peroxide (H2O2), and electrolyte leakage (EL). Interestingly, activities of all four antioxidants (ascorbic acid, catalase, ascorbate peroxidase and peroxidase) increased with increase in Cd toxicity.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
75--84
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Department of Botany, University of Agriculture Faisalabad, 38000 Faisalabad, Pakistan
autor
- Department of Agronomy, University of Agriculture Faisalabad, 38000 Faisalabad, Pakistan
autor
- Department of Agronomy, University of Agriculture Faisalabad, 38000 Faisalabad, Pakistan
autor
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
autor
- Schlool of Agriculture, Jilin Agricultural University, China
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
autor
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
autor
- Central Laboratories, King Faisal University, PO Box 420, 31982 Al-Ahsa, Saudi Arabia
autor
- Department of Agricultural Biotechnology, College of Agriculture and Food Sciences, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
- Department of Virus and Phytoplasma, Plant Pathology Institute, Agricultural Research Center, 12619 Giza, Egypt
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, 31982 Al-Ahsa, Saudi Arabia
- Plant Pests, and Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, 31982 AlAhsa, Saudi Arabia
Bibliografia
- 1. Abd_Allah, E.F., Hashem, A., Alqarawi, A.A., Wirth, S., Egamberdieva, D. 2017. Calcium application enhances growth and alleviates the damaging effects induced by Cd stress in sesame (Sesamum indicum L.). Journal of Plant Interactions, 12(1), 237–243.
- 2. Almuwayhi, M.A. 2021. Effect of cadmium on the molecular and morpho-physiological traits of Pisum sativum L. Biotechnology and Biotechnological Equipment, 35(1), 1374–1384.
- 3. Chaâbene, Z., Hakim, I.R., Rorat, A., Elleuch, A., Mejdoub, H., Vandenbulcke, F. 2018. Copper toxicity and date palm (Phoenix dactylifera) seedling tolerance: monitoring of related biomarkers. Environmental Toxicology and Chemistry, 37(3), 797–806.
- 4. Cuypers, A., Vanbuel, I., Iven, V., Kunnen, K., Vandionant, S., Huybrechts, M., Hendrix, S. 2023. Cadmium-induced oxidative stress responses and acclimation in plants require fine-tuning of redox biology at subcellular level. Free Radical Biology and Medicine, 199, 81–96
- 5. Dobrikova, A.G., Apostolova, E.L., 2019. Damage and protection of the photosynthetic apparatus under cadmium stress. In: Cadmium Toxicity and Tolerance in Plants, pp. 275–298.
- 6. Dobrikova, A.G., Apostolova, E.L., Hanć, A., Yotsova, E., Borisova, P., Sperdouli, I., Adamakis, I.D.S., Moustakas, M. 2021. Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis. Ecotoxicology and Environmental Safety, 209, 111851.
- 7. Ge, W., Jiao, Y. 2012. Changes of soluble protein content of two poplar trees under cadmium stress [J]. Modern Agriculture Science and Technology 1, 199–200.
- 8. Islam, M., Sandhi, A. 2022. Heavy metal and drought stress in plants: the role of microbes–a review. Gesunde Pflanzen, 4, 695–708.
- 9. Kavian, S., Zarei, M., Niazi, A., Ghasemi-Fasaei, R., Shahriari, A.G., Janda, T., 2023. Morphophysiological and biochemical responses of Zea mays L. under cadmium and drought stresses integrated with fungal and bacterial inoculation. Agronomy, 13(7), 1675.
- 10. Kaya, C., Akram, N.A., Ashraf, M., Alyemeni, M.N., Ahmad, P. 2020. Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. Journal of Biotechnology, 316, 35–45.
- 11. Kohli, S.K., Khanna, K., Bhardwaj, R., Abd_Alla, E.F., Corpas, F.J. 2019. Assessment of subcellular ros and no metabolism in higher plants: multifunctional signaling molecules. Antioxidants, 8, 12.
- 12. Ma, Y., Jie, H., Zhao, L., Zhang, Y., He, P., Lv, X., Liu, X., Xu, Y., Jie, Y. 2023. Exogenous xyloglucan oligosaccharides alleviate cadmium toxicity in Boehmeria nivea by increasing the cadmium fixation capacity of cell walls. Agronomy, 13(11), 2786.
- 13. Nie, L., Zhou, B., Hong, B., Wang, X., Chang, T., Guan, C., Guan, M. 2023. Application of selenium can alleviate the stress of cadmium on rapeseed at different growth stages in soil. Agronomy, 13(9), 2228.
- 14. Ozfidan-Konakci, C., Yildiztugay, E., Bahtiyar, M., Kucukoduk, M. 2018. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicology and Environmental Safety, 155, 66–75.
- 15. Pacheco, D.D.R., Santana, B.C.G., Pirovani, C.P., de Almeida, A.-A.F. 2023, Zinc/Iron-regulated transporter-like protein (ZIP) gene family in Theobroma cacao L: characteristics, evolution, function and 3D structure analysis. Frontiers in Plant Sciences, 14, 511.
- 16. Rady, M.M., Salama, M.M., Kuşvuran, S., Kuşvuran, A., Ahmed, A.F., Ali, E.F., Farouk, H.A., Osman, A.S., Selim, K.A., Mahmoud, A.E. 2023. Exploring the role of novel biostimulators in suppressing oxidative stress and reinforcing the antioxidant defense systems in Cucurbita pepo plants exposed to cadmium and lead toxicity. Agronomy, 13(7), 1916.
- 17. Sachdev, S., Ansari, S.A., Ansari, M.I. 2023, ROS Generation in plant cells orchestrated by stress. in reactive oxygen species in plants: the right balance; springer: Berlin/Heidelberg, Germany, Pp, 23–43.
- 18. Sahay, S. Gupta, M. 2017. An update on nitric oxide and its benignrole in plant responses under metal stress. Nitric Oxide, 67, 3952.
- 19. Saidi, I., Ayouni, M., Dhieb, A., Chtourou, Y., Chaïbi, W., Djebali, W. 2013. Oxidative damages induced by short-term exposure to cadmium in bean plants: protective role of salicylic acid. South African Journal of Botany, 85, 32–38.
- 20. Shaari, N.E.M., Tajudin, M.T.F.M., Khandaker, M.M., Majrashi, A., Alenazi, M.M., Abdullahi, U.A., Mohd, K.S., 2022. Cadmium toxicity symptoms and uptake mechanism in plants: a review. Brazilian Journal of Biology, 84, 252143.
- 21. Song, X., Yue, X., Chen, W., Jiang, H., Han, Y., Li, X. 2019. Detection of cadmium risk to the photosynthetic performance of Hybrid pennisetum. Frontiers in plant science, 10, 798.
- 22. Tyagi, N., Raghuvanshi, R., Upadhyay, M.K., Srivastava, A.K., Suprasanna, P., Srivastava, S. Elemental (As, Zn, Fe and Cu) analysis and health risk assessment of rice grains and rice based food products collected from markets from different cities of Gangetic basin, India. J. Food Composition Annals 93, 103612.
- 23. Wang, Y., Narayanan, M., Shi, X., Chen, X., Li, Z., Natarajan, D., Ma, Y. 2022. Plant growth-promoting bacteria in metal-contaminated soil: Current perspectives on remediation mechanisms. Frontiers in Microbiology, 13, 966226.
- 24. Wei, T., Liu, X., Dong, M., Lv, X., Hua, L., Jia, H., Ren, X., Yu, S., Guo, J., Li, Y. 2021. Rhizosphere iron and manganese-oxidizing bacteria stimulate root iron plaque formation and regulate Cd uptake of rice plants (Oryza sativa L.). Journal of Environmental Management, 278, 111533.
- 25. Yang, G.L., Zheng, M.M., Tan, A.J., Liu, Y.T., Feng, D., Lv, S.M. 2021, Research on the mechanisms of plant enrichment and detoxicfication of cadmium. Biology, 10, 544.
- 26. Yousefi, Z., Babanejad, E., Mohammadpour, R., Esbokolaee, H.N. 2023. Evaluation of Cd phytoremediation by Portulaca oleracea irrigated by contaminated water. Environmental Health Engineering and Management Journal, 2023, 15, 286.
- 27. Zhang, X.D., Meng, J.G., Zhao, K.X., Chen, X., Yang, Z.M. 2018. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Biometals, 31, 107–121.
- 28. Zhu, H., Su, J., Yang, F., Wu, Y., Ye, J., Huang, K., Yang, Y. 2023. Effect of lossy thin-walled cylindrical food containers on microwave heating performance. Journal of Food Engineering, 337, 111232.
- 29. Zulfiqar, U., Ayub, A., Hussain, S., Waraich, E.A., El-Esawi, M.A., Ishfaq, M., Ahmad, M., Ali, N., Maqsood, M.F. 2022. Cadmium toxicity in plants: Recent progress on morpho-physiological effects and remediation strategies. Journal of Soil Science and Plant Nutrition, 1–58.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b19d370-9469-40a3-98d3-53689936c5ab