PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Existence of a solution for the fractional forced pendulum

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work we study the fractional forced pendulum equation with combined fractional derivatives - tDαT 0Dαt u( t ) + g ( u ( t )) = f ( t ), t ∈ ( 0, T ) ( 0. 1 ) u ( 0 ) = u ( T ) = 0 where ½ < α < 1, g ∈ C ( R, R ), bounded f ∈ C [ 0, T ]. Using minimization techniques form variational calculus we show that ( 0. 1 ) has a nontrivial solution.
Rocznik
Strony
125--142
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
  • Departamento de Ingeniería Matemática, Centro de Modelamiento Matemático Universidad de Chile, Santiago, Chile
Bibliografia
  • [1] Kilbas A., Srivastava H., Trujillo J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, Amsterdam 2006.
  • [2] Miller K., Ross B., An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley and Sons, New York 1993.
  • [3] Podlubny I., Fractional Differential Equations, Academic Press, New York 1999.
  • [4] Agarwal R., Benchohra M., Hamani S., Boundary value problems for fractional differential equations, Georg. Math. J. 2009, 16, 3, 401-411.
  • [5] Agarwal R., Belmekki M., Benchohra M., A survey on semilinear differential equations and inclusions involving Riemann-Liouville fractional derivative, Adv. Difference Equ. 2009, 9.
  • [6] Agrawal O., Tenreiro Machado J., Sabatier J., Fractional Derivatives and Their Application: Nonlinear Dynamics, Springer-Verlag, Berlin 2004.
  • [7] Anh V., Mcvinish R., Fractional differential equations driven by Lévy noise, J. Appl. Math. and Stoch. Anal. 2003, 16, 2, 97-119.
  • [8] Benchohra M., Henderson J., Ntouyas S., Ouahab A., Existence results for fractional order functional differential equations with infinite delay, J. of Math. Anal. Appl. 2008, 338, 2, 1340-1350.
  • [9] Hilfer R., Applications of Fractional Calculus in Physics, World Scientific, Singapore 2000.
  • [10] Lakshmikantham V., Vatsala A., Basic theory of fractional differential equations, Nonl. Anal. 2008, 69, 8, 2677-2682.
  • [11] Metsler R., Klafter J., The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A 2004, 37, 161 208.
  • [12] Sabatier J., Agrawal O., Tenreiro Machado J., Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering, Springer-Verlag, Berlin 2007.
  • [13] West B., Bologna M., Grigolini P., Physics of Fractal Operators, Springer-Verlag, Berlin 2003.
  • [14] Riewe F., Nonconservative Lagrangian and Hamiltonian mechanics, Phys. Rev. E 1996, 53, 1890-1899.
  • [15] Riewe F., Mechanics with fractional derivative, Phys. Rev. E 1997, 55, 3581-3592.
  • [16] Klimek M., Fractional sequential mechanics-models with symmetric fractional derivative, Czech. J. Phys. 2001, 51, 1348-1354.
  • [17] Klimek M., Lagrangean and Hamiltonian fractional sequential mechanics, Czech. J. Phys. 2002, 52, 1247-1253.
  • [18] Agrawal O., Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 2002, 272, 368-379.
  • [19] Agrawal O., Analytical schemes for a new class of fractional differential equations, J. Phys. A: Mathematical and Theoretical 2007, 40, 21, 5469-5477.
  • [20] Baleanu D., Trujillo J., On exact solutions of a class of fractional Euler-Lagrange equations, Nonlinear Dyn. 2008, 52, 331-335.
  • [21] Klimek M., Existence and uniqueness result for a certain equation of motion in fractional mechanics, Bull. Polish Acad. Sci. Tech. Sci. 2010, 58, 4, 573-581.
  • [22] Klimek M., Solutions of Euler-Lagrange equations in fractional mechanics, AIP Conference Proceedings 956. XXVI Workshop on Geometrical Methods in Physics, 2007, 73-78.
  • [23] Klimek M., G-Meijer functions series as solutions for certain fractional variational problem on a finite time interval, JESA 2008, 42, 653-664.
  • [24] Leszczynski S., Blaszczyk T., Modeling the transition between stable and unstable operation while emptying a silo, Granular Matter 2011, 13, 429-438.
  • [25] Szymanek E., The application of fractional order differential calculus for the description of temperature profiles in a granular layer, [in:] Theory & Appl. of Non-integer Order Syst.,W. Mitkowski et al. (eds.), LNEE 275, Springer Inter. Publ. Switzerland, 2013, 243-248.
  • [26] Mawhin J., Seventy-five years of global analysis around the forced pendulum equation, EQUADIFF 1997, 9, 115-145.
  • [27] Mawhin J., Global results for the forced pendulum equation, [in:] Handbook of Differential Equations, vol. 1, 2004, 533-589.
  • [28] Grossinho M., Tersian S., An Introduction to Minimax Theorems and Their Applications to Differential Equations, Kluwer Academic Publishers, London 2001.
  • [29] Bourdin L., Existence of a weak solution for fractional Euler-Lagrange equations, J. Math. Anal. Appl. 2013, 399, 239-251.
  • [30] Jiao F., Zhou Y., Existence results for fractional boundary value problem via critical point theory, Intern. Journal of Bif. and Chaos 2012, 22, 4, 1-17.
  • [31] Agrawal O., A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn. 2004, 38, 323-337.
  • [32] Agrawal O., A numerical scheme and an error analysis for a class of Fractional Optimal Control problems, Proceedings of the ASME 2009, San Diego, California 2009.
  • [33] Agrawal O., A general finite element formulation for fractional variational problems, J. Math. Anal. Appl. 2008, 337, 1-12.
  • [34] Atanackovic T., Stankovic B., On a class of differential equations with left and right fractional derivatives, ZAMM 2007, 87, 537-539.
  • [35] Baleanu D., Avkar T., Lagrangians with linear velocities within Riemann-Liouville fractional derivatives, Nuovo Cimento B 2004, 119, 73-79.
  • [36] Baleanu D., Golmankhaneh A., Nigmatullin R., Golmankhaneh A., Fractional Newtonian mechanics, Cent. Eur. J. Phys. 2010, 8, 1, 120-125.
  • [37] Baleanu D., Muslish S., Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives, Phys. Scr. 2005, 72, 119-121.
  • [38] Baleanu D., Fractional Hamiltonian analysis of irregular systems, Signal Process 2006, 86, 2632-2636.
  • [39] Blaszczyk T., Application of the Rayleigh-Ritz method for solving fractional oscillator equation, Scientific Research of the Institute of Mathematics and Computer Science 2009, 2, 29-36.
  • [40] Cresson J., Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 2007, 48, 033504.
  • [41] Samko S., Kilbas A., Marichev O., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, New York 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b175a6a-6957-4a8e-a963-517790adc605
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.