PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of the data packet size on positioning parameters of UWB system for the purpose of tagging smart city infrastructure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a concept of the vehicle/road infrastructure in vehicle-to-infrastructure (V2I) communication for tagging and informing vehicles about the surrounded environment. A frame analysis and the influence of the data packet size on Ultra-wideband (UWB) were investigated. The authors have determined the distance that could be traveled by a vehicle at the given speed in relation to the amount of data that has to be transmitted during the ranging procedure. The authors propose a data frame format (using the IEEE 802.15.4a protocol) for coding/encoding the information about the road infrastructure efficiently during the positioning procedure. It affects to minimum the time that is required to exchange messages during the ranging and communication process. The whole system is an efficient and reliable element that enhances/extends the existing components of advanced driver-assistance systems (ADAS), which will facilitate validation of the information obtained from devices such as lidar, radar or video. The impact of the transmitted payload to the distance traveled by car opens the door to future research on the possibility of implementing efficient vehicle-to-vehicle (V2V) communication for autonomous driving or and other smart city solutions.
Słowa kluczowe
Rocznik
Strony
857--868
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
autor
  • Department of Electronics, Electrical Engineering and Microelectronics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
autor
  • Department of Electronics, Electrical Engineering and Microelectronics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
autor
  • Department of Electronics, Electrical Engineering and Microelectronics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
Bibliografia
  • [1] V. Gikas and H. Perakis, “Rigorous Performance Evaluation of Smartphone GNSS/IMU Sensors for ITS Applications”, Sensors 16(8), 1240 (2016). doi: 10.3390/s16081240.
  • [2] L. Wei, C. Cappelle, Y. Ruichek, and F. Zann, “GPS and Stereovision-Based Visual Odometry: Application to Urban Scene Mapping and Intelligent Vehicle Localization”, Int. J. Veh. Technol. 2011, 1–17 (2011). doi: 10.1155/2011/439074.
  • [3] D. Grzechca and K. Paszek, “Short-term positioning accuracy based on mems sensors for smart city solutions”, Pol. Acad. Sci. Comm. Metrol. Sci. Instrum., 26(1), 95‒107 (2019). doi: 10.24425/mms.2019.126325.
  • [4] M. Kozłowski and W. Choromański, “Dynamics simulation studies on the electric city car with an electromechanical differential and the rear wheels drive”, Bull. Pol. Ac.: Tech. 61(3), 661–673 (2013). doi: 10.2478/bpasts-2013‒0070.
  • [5] H. Fan, W. Yao, and L. Tang, “Identifying Man-Made Objects Along Urban Road Corridors From Mobile LiDAR Data”, IEEE Geosci. Remote Sens. Lett. 11(5), 950–954 (2014). doi: 10.1109/LGRS.2013.2283090.
  • [6] C. Fernández, D. Fernández-Llorca, and M. A. Sotelo, “A Hybrid Vision-Map Method for Urban Road Detection”, J. Adv. Transp. 2017, 1–21 (2017). doi: 10.1155/2017/7090549.
  • [7] J.C. Halimeh and M. Roser, “Raindrop detection on car wind-shields using geometric-photometric environment construction and intensity-based correlation”, in 2009 IEEE Intelligent Vehicles Symposium, 2009, pp. 610–615, doi: 10.1109/IVS.2009.5164347.
  • [8] U. Lee et al., “EureCar turbo: A self-driving car that can handle adverse weather conditions”, in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016, pp. 2301–2306. doi: 10.1109/IROS.2016.7759359.
  • [9] J. Lee, Y. Su, and C. Shen, “A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and Wi-Fi”, in IECON 2007 – 33rd Annual Conference of the IEEE Industrial Electronics Society, Nov. 2007), 46–51, doi: 10.1109/IECON.2007.4460126.
  • [10] A. Alarifi et al., “Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances”, Sensors 16(5), 707 (2016). doi: 10.3390/s16050707.
  • [11] A. Darif, R. Saadane, and D. Aboutajdine, “Energy consumption of IR-UWB based WSN in a start topology”, in 2014 International Conference on Multimedia Computing and Systems (ICMCS), 2014, pp. 663–667. doi: 10.1109/ICMCS.2014.6911296.
  • [12] A. Darif, R. Saadane, and D. Aboutajdine, “A study with simulation of power consumption and latency for MAC protocols in WSN based on IR-UWB transceiver”, in 2014 Second World Conference on Complex Systems (WCCS), 2014, pp. 242–247. doi: 10.1109/ICoCS.2014.7060889.
  • [13] D. Grzechca and K. Hanzel, “The positioning accuracy based on the UWB technology for an object on circular trajectory”, Int. J. Electron. Telecommun. 64(4), 487–494, (2018).
  • [14] J. Kolakowski, J. Cichocki, P. Makal, and R. Michnowski, “An Ultra-Wideband System for Vehicle Positioning”, Int. J. Electron. Telecommun. 56(3), 247–256, (2010). doi: 10.2478/v10177‒010‒0032‒1.
  • [15] A. De Angelis, J. Nilsson, I. Skog, H. Peter, and P. Carbone, “Indoor Positioning by Ultrawide Band Radio Aided Inertial Navigation,” Metrol. Meas. Syst. 17(3), 447–460, 2010, doi:10.2478/v10178‒010‒0038‒0.
  • [16] G. Cwikla, C. Grabowik, K. Kalinowski, I. Paprocka, and W. Banas, “The initial considerations and tests on the use of real time locating system in manufacturing processes improvement”, IOP Conf. Ser. Mater. Sci. Eng. 400, p. 042013, (2018). doi: 10.1088/1757‒899x/400/4/042013.
  • [17] T. Gigl, F. Troesch, J. Preishuber-Pfluegl, and K. Witrisal, “Ranging Performance of the IEEE 802.15.4a UWB Standard under FCC/CEPT Regulations”, J. Electr. Comput. Eng. 2012, pp. 1–9, 2012, doi: 10.1155/2012/218930.
  • [18] H. Dong, B. Ning, B. Cai, and Z. Hou, “Automatic Train Control System Development and Simulation for High-Speed Railways”, IEEE Circuits Syst. Mag. 10(2), 6–18, (2010). doi: 10.1109/MCAS.2010.936782.
  • [19] A. Platzer and J.-D. Quesel, “European Train Control System: A Case Study in Formal Verification”, in Formal Methods and Software Engineering, 2009, pp. 246–265.
  • [20] L.L. Presti and S. Sabina, Eds., GNSS for Rail Transportation: Challenges and Opportunities. Springer International Publishing, 2018.
  • [21] U. Berger, P. James, A. Lawrence, M. Roggenbach, and M. Seisenberger, “Verification of the European Rail Traffic Management System in Real-Time Maude”, Sci. Comput. Program. 154, 61–88, (2018). doi: 10.1016/j.scico.2017.10.011.
  • [22] C. Pinedo, M. Aguado, I. Lopez, and J. Astorga, “Modelling and Simulation of ERTMS for Current and Future Mobile Technologies”, Int. J. Veh. Technol. 2015, 1–11 (2015). doi: 10.1155/2015/912417.
  • [23] W.-H. Lee and C.-Y. Chiu, “Design and Implementation of a Smart Traffic Signal Control System for Smart City Applications”, Sensors 20(2), 508 (2020). doi: 10.3390/s20020508.
  • [24] A.E. Gueraa, R. Saadane, and D. Aboutajdine, “Impact of mobility model on packet transmission in vehicular ad hoc network based on IR-UWB”, in 2015 International Conference on Wireless Networks and Mobile Communications (WINCOM), Oct. 2015, pp. 1–5. doi: 10.1109/WINCOM.2015.7381321.
  • [25] W. Birk, E. Osipov, and J. Eliasson, “iRoad – cooperative road infrastructure systems for driver support”, presented at the World Congress and Exhibition on Intelligent Transport Systems and Services : 21/09/2009 – 25/09/2009, 2009, Accessed: Apr. 27, 2020. [Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-35399.
  • [26] “OpenStreetMap Wiki”. https://wiki.openstreetmap.org/wiki/Main_Page (accessed Jun. 19, 2019).
  • [27] “OpenStreetMap – SUT campus”, OpenStreetMap. https://www.openstreetmap.org/#map=18/50.28927/18.67805&layers=D (accessed Jun. 19, 2019).
  • [28] K.A. Nuaimi and H. Kamel, “A survey of indoor positioning systems and algorithms”, in 2011 International Conference on Innovations in Information Technology, Apr. 2011, pp. 185–190. doi: 10.1109/INNOVATIONS.2011.5893813.
  • [29] R.F. Brena, J.P. García-Vázquez, C.E. Galván-Tejada, D. Muñoz-Rodriguez, C. Vargas-Rosales, and J. Fangmeyer, “Evolution of Indoor Positioning Technologies: A Survey”, J. Sens. 2017, 1–21 (2017). doi: 10.1155/2017/2630413.
  • [30] S. Koziel and A. Bekasiewicz, “Recent developments in simulation-driven multi-objective design of antennas”, Bull. Pol. Ac.: Tech. 63(3), 781–789 (2015). doi: 10.1515/bpasts-2015‒0089.
  • [31] “IEEE Standard for Local and metropolitan area networks–Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)”, IEEE Std 802154‒2011 Revis. IEEE Std 802154‒2006, pp. 1–314, 2011. doi: 10.1109/IEEESTD.2011.6012487.
  • [32] “DW1000 User Manual”, Decawave. https://www.decawave.com/dw1000/usermanual/ (accessed Jun. 28, 2019).
  • [33] DecaWave Ltd 2014, “DecaRanging ARM Source Code Guide rev1.6”. DecaWave Ltd, 2014, Accessed: Jun. 28, 2019. [Online].
  • [34] D. Grzechca, P. Rybka, and K. Paszek, “Evaluation of the Accuracy of ADAS Module Readings Based on an Analysis of the Transient Supply Current and Neural Network Application”, Elektron. Ir Elektrotechnika 24(3), 46–52 (2018). doi: 10.5755/j01.eie.24.3.20944.
  • [35] “United Nations harmonization of hazard classification criteria and communication tools.” [Online]. Available: http://www.unece.org/fileadmin/DAM/trans/danger/publi/unrec/English/Part2.pdf.
  • [36] “Guidelines for Use of Extended Unique Identifier (EUI), Organizationally Unique Identifier (OUI), and Company ID (CID)”, 2017.
  • [37] Abdelmoumen Norrdine, “An Algebraic Solution to the Multilateration Problem.” Unpublished, 2015, doi: 10.13140/RG.2.1.1681.3602. (accessed Aug. 02, 2017).
  • [38] S.A. Mahmoudi, M. Kierzynka, P. Manneback, and K. Kurowski, “Real-time motion tracking using optical flow on multiple GPUs”, Bull. Pol. Ac.: Tech. 62(1), 139–150, 2014, doi: 10.2478/bpasts-2014‒0016.
  • [39] Y. Zheng, Y. Li, C.-M. Own, Z. Meng, and M. Gao, “Real-time predication and navigation on traffic congestion model with equilibrium Markov chain”, Int. J. Distrib. Sens. Netw. 14(4), 1550147718769784 (2018). doi: 10.1177/1550147718769784.
  • [40] A. Mogelmose, M.M. Trivedi, and T.B. Moeslund, “Vision-Based Traffic Sign Detection and Analysis for Intelligent Driver Assistance Systems: Perspectives and Survey”, IEEE Trans. Intell. Transp. Syst. 13(4), 1484–1497, (2012). doi: 10.1109/TITS.2012.2209421.
  • [41] S.B. Wali, M.A. Hannan, A. Hussain, and S.A. Samad, “An Automatic Traffic Sign Detection and Recognition System Based on Colour Segmentation, Shape Matching, and SVM”, Math. Probl. Eng. 2015, 1–11 (2015). doi: 10.1155/2015/250461.
  • [42] F. Ghallabi, G. El-Haj-Shhade, M.-A. Mittet, and F. Nashashibi, “LIDAR-Based road signs detection For Vehicle Localization in an HD Map”, Paris, France, Jun. 2019, Accessed: Jun. 21, 2019. [Online]. Available: https://hal.archives-ouvertes.fr/hal-02117395.
  • [43] “Snow Photos”. http://www.ilankelman.org/blizzard2.html (accessed Jun. 21, 2019).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b1380cc-7515-4a22-b07b-fd5de6d2f8fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.