PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Overview of conventional technologies using the powders of metals, their alloys and ceramics in Industry 4.0 stage

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Among the technologies that play a crucial role in the current stage of development of Industry 4.0 conventional powder engineering technologies are of great importance. Based on a comprehensive literature review, conventional technologies using the powders of metals, their alloys and ceramics are described. Development perspectives of the most widespread among them were indicated. Design/methodology/approach: Extensive literature studies on conventional powder engineering technologies have been carried out. By using knowledge engineering methods, development perspectives of individual technologies were indicated. Findings: In addition to the presentation of conventional sintering technological methods, sintering mechanisms in solid-state and liquid phase sintering which accounts for 90% of the commercial value of sintered products are presented. Originality/value: According to augmented holistic Industry 4.0 model, many materials processing technologies and among them conventional powder engineering technologies play a key role in current industry development. For this reason, these technologies have been characterized in detail on the basis of available literature sources.
Rocznik
Strony
56--85
Opis fizyczny
Bibliogr. 274 poz., rys., tab., wykr.
Twórcy
  • Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D, 44-100 Gliwice, Poland
  • Medical and Dental Engineering Center for Research, Design and Production ASKLEPIOS, ul. Królowej Bony 13D, 44-100 Gliwice, Poland
  • Department of Mechanical Engineering, University of Zielona Góra, ul. Prof. Z. Szafrana 4, 65-516 Zielona Góra, Poland
Bibliografia
  • [1] M. Rüßmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel, M. Harnisch, Industry 4.0: The future of productivity and growth in manufacturing industries, Boston Consulting Group, Boston, MA, 2015. Available at: http://web.archive.org/web/20190711124617/https://www.zvw.de/media.media.72e472fb-1698-4a15-8858344351c8902f.original.pdf
  • [2] H. Kagermann, Industry 4.0 benefits, in: Industry 4.0 in production, automation and logistics, Springer Fachmedien Wiesbaden, Wiesbaden, Germany, 2014, 603-614 (in German).
  • [3] H. Kagermann, W. Wahlster, J. Helbig, Recommendations for Implementing the Strategic Initiative Industrie 4.0: Final Report of the Industrie 4.0 Working Group, Federal Ministry of Education and Research, Bonn, Germany, 2013.
  • [4] M. Hermann, T. Pentek, B. Otto, Design Principles for Industrie 4.0 Scenarios: A Literature Review, Technische Universität Dortmund, Dortmund, Germany, 2015.
  • [5] L.A. Dobrzański, L.B. Dobrzański, Approach to the design and manufacturing of prosthetic dental restorations according to the rules of the Industry 4.0 industrial revolution stage, MPC (2020) (in print).
  • [6] L.A. Dobrzański, Effect of Heat and Surface Treatment on the Structure and Properties of the Mg-Al-Zn-Mn Casting Alloys, in: L.A. Dobrzański, G.E. Totten, M. Bamberger (Eds.), Magnesium and Its Alloys: Technology and Applications, CRC Press, Boca Raton, FL, 2019, 91-202.
  • [7] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Why are Carbon-Based Materials Important in Civilization Progress and Especially in the Industry 4.0 Stage of the Industrial Revolution?, Materials Performance and Characterization 8/3 (2019) 337-370. DOI: https://doi.org/ 910.1520/MPC20190145
  • [8] L.A. Dobrzański, L.B. Dobrzański, Dentistry 4.0 Concept in the Design and Manufacturing of Prosthetic Dental Restorations, Processes 8 (2020) 525. DOI: https://doi.org/10.3390/pr8050525
  • [9] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, M. Kraszewska, Manufacturing powders of metals, their alloys and ceramics and the importance of conventional and additive technologies for products manufacturing in Industry 4.0 stage, Archives of Materials Science and Engineering 102/1 (2020) (prepared for printing).
  • [10] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, Additive and hybrid technologies for products manufacturing using powders of metals, their alloys and ceramics, Archives of Materials Science and Engineering 102/2 (2020) (accepted for publication).
  • [11] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, Manufacturing technologies thick-layer coatings on various substrates and manufacturing gradient materials using powders of metals, their alloys and ceramics, Journal of Achievements in Materials and Manufacturing Engineering 99/1 (2020) (accepted for publication).
  • [12] A.D. Dobrzańska-Danikiewicz, L.A. Dobrzański, A. Sękala, Results of Technology Foresight in the Surface Engineering Area, Applied Mechanics and Materials 657 (2014) 916-920. DOI: https://doi.org/10.4028/www.scientific.net/AMM.657.916
  • [13] L.A. Dobrzański, T. Tański, A.D. Dobrzańska-Danikiewicz, E. Jonda, M. Bonek, A. Drygała, Structures, properties and development trends of laser surface treated hot-work steels, light metal alloys and polycrystalline silicon, in: J. Lawrence, D. Waugh (Eds.), Laser Surface Engineering. Processes and Applications, Woodhead Publishing Series in Electronic and Optical Materials, Elsevier Ltd, Amsterdam, Boston, Cambridge, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo, 2015, 3-32.
  • [14] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Foresight of the Surface Technology in Manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 2587-2637.
  • [15] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Materials surface engineering - a compendium of knowledge and an academic handbook, International OCSCO World Press, Gliwice, Poland, 2018 (in Polish).
  • [16] A.D. Dobrzańska-Danikiewicz, Foresight of material surface engineering as a tool building a knowledge based economy, Materials Science Forum 706-709 (2012) 2511-2516. DOI: https://doi.org/10.4028/www.scientific.net/MSF.706709.2511
  • [17] A.D. Dobrzanska-Danikiewicz, Computer integrated development prediction methodology in materials surface engineering, International OCSCO World Press, Gliwice, Poland, 2012 (in Polish).
  • [18] W.D. Callister, Fundamentals of Materials Science and Engineering, Wiley & Sons, New York, 2001.
  • [19] C. Suryanarayana, Mechanical alloying and milling, Progress in Materials Science 46/1-2 (2001) 1-184. DOI: https://doi.org/10.1016/S0079-6425(99)00010-9
  • [20] L.A. Dobrzański, G. Matula, Powder metallurgy fundamentals and sintered materials, International OCSCO World Press, Gliwice, Poland, 2012 (in Polish).
  • [21] L.A. Dobrzański, Engineering materials and material design: Fundamentals of materials science and metal science, WNT, Warsaw, Poland, 2006 (in Polish).
  • [22] J. Nowacki, Sintered metals and metal matrix composites, WNT, Warsaw, Poland, 2005 (in Polish).
  • [23] R. Pampuch, K. Haberko, M. Kordek, The science of ceramic processes, PWN, Warsaw, Poland, 1992 (in Polish).
  • [24] M. Wysiecki, Modern tool materials, WNT, Warsaw, Poland, 1997 (in Polish).
  • [25] K. Oczoś, Shaping ceramic technical materials, Rzeszów University of Technology Publishing House, Rzeszów, Poland, 1996 (in Polish).
  • [26] M.J. Kupczyk, Methods for producing metal powders, alloys and non-metals for the production of sintered tool materials, Archives of Machine Technology and Automation PAN 31/1 (2011) 17-26 (in Polish).
  • [27] A. Heim, M. Solecki, Kinetics of yeast cell disintegration in a pearl mill, Chemical Engineering and Equipment 50/1 (2011) 9-10 (in Polish).
  • [28] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles, Journal of Materials Processing Technology 175/1-3 (2006) 186-191. DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.031
  • [29] L.A. Dobrzański, A. Włodarczyk, M. Adamiak, Structure, properties and corrosion resistance of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the Al2O3 ceramic particles, Journal of Materials Processing Technology 162-163 (2005) 27-32. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.006
  • [30] L.A. Dobrzański, Current development trends of sintered tool materials, Fachhochschule Würzburg-SchweinfurtAschaffenburg, Schweinfurt, 1995, 1-40 (in German).
  • [31] L.A. Dobrzański, E. Hajduczek, J. Marciniak, R. Nowosielski, Metallurgy and heat treatment of tool materials, WNT, Warsaw, Poland, 1990 (in Polish).
  • [32] P.K. Samal, J.W. Newkirk (Eds.), ASM Handbook: Volume 7: Powder Metallurgy, ASM International, Materials Park, OH, 2015.
  • [33] R.M. German, Powder metallurgy and particulate materials processing, Metal Powder Industries Federation, Princeton, New Jersey, 2005.
  • [34] L.A. Dobrzański, Descriptive metal science of iron alloys, Silesian University of Technology Publishing House, Gliwice, Poland, 2007 (in Polish).
  • [35] R.M. German, Sintering theory and practice, John Wiley & Sons, New York, 1996.
  • [36] S.H. Huo, M. Qian, G.B. Schaffer, E. Crossin, Aluminium powder metallurgy, in: R. Lumley (Ed.), Fundamentals of Aluminium Metallurgy; Production, Processing and Applications, Woodhead Publishing Limited, Cambridge, UK, 2011, 655-701.
  • [37] R.M. German, Phase diagrams in liquid phase sintering treatments, JOM 38/8 (1986) 26-29. DOI: https://doi.org/10.1007/BF03257783
  • [38] G.B. Schaffer, T.B. Sercombe, R.N. Lumley, Liquid phase sintering of aluminium alloys, Materials Chemistry and Physics 67/1-3 (2001) 85-91. DOI: https://doi.org/10.1016/S0254-0584(00)00424-7
  • [39] S-J. L. Kang, Basis of Liquid Phase Sintering, in: Sintering, Densification, Grain Growth and Microstructure, Butterworth-Heinemann, Amsterdam, 2005, 199-203. DOI: https://doi.org/10.1016/B978075066385-4/50014-5
  • [40] S-J.L. Kang, Liquid phase sintering, in: Sintering of Advanced Materials, Woodhead Publishing Series, in: Z.Z. Fang (Ed.), Metals and Surface Engineering, Woodhead Publishing Limited, Cambridge, UK, 2010, 110-129. DOI: https://doi.org/10.1533/9781845699949.1.110
  • [41] R.N. Lumley, G.B. Schaffer, The effect of solubility and particle size on liquid phase sintering, Scripta Materialia 35/5 (1996) 589-595. DOI: https://doi.org/10.1016/1359-6462(96)00195-9
  • [42] J. Kazior, Boron in sintered austenitic stainless steels, Cracow University of Technology Publishing House, Cracow, Poland, 2004 (in Polish).
  • [43] J. Sarkar, Chapter 4 - Sputtering Target Manufacturing, in: Sputtering Materials for VLSI and Thin Film Devices, William Andrew, Waltham, 2014, 197-289. DOI: https://doi.org/10.1016/B978-0-8155-1593-7.00004-7
  • [44] R.M. German, J.W. Dunlap, Processing of irontitanium powder mixtures by transient liquid phase sintering, Metallurgical Transactions A 17 (1986) 205213. DOI: https://doi.org/10.1007/BF02643896
  • [45] J.D. Bolton, A.J. Gant, Liquid phase sintering of metal matrix composites containing solid lubricants, Journal of Materials Processing Technology 56/1-4 (1996) 136-147. DOI: https://doi.org/10.1016/09240136(95)01829-8
  • [46] R.M. German, A-Z of Powder Metallurgy, Elsevier, Oxford, UK, 2005.
  • [47] W. Rutkowski, Powder metallurgy in modern technology, Śląsk Publishing House, Katowice, Poland, 1963 (in Polish).
  • [48] G.S. Upadhyaya, Sintered metallic and ceramic materials. Preparation, properties and application, John Wiley and Sons, Chichester, 2000.
  • [49] G.S. Upadhyaya (Ed.), Cemented tungsten carbides: Production, properties, and testing, Noyes Publications, Westwood, N.J., 1998.
  • [50] W.D. Kingery, Densification During Sintering in the Presence of a Liquid Phase, I. Theory, Journal of Applied Physics 30/3 (1959) 301-306. DOI: https://doi.org/10.1063/1.1735155
  • [51] W.J. Huppmann, H. Riegger, W.A. Kaysser, V. Smolej, S. Pejovnik, The elementary mechanisms of liquid phase sintering, I: rearrangement, Zeitschrift fur Metallkunde 70 (1979) 707-713.
  • [52] A. Mortensen, Kinetics of densification by solutionreprecipitation, Acta Materialia 45/2 (1997) 749-758. DOI: https://doi.org/10.1016/S1359-6454(96)00202-9
  • [53] O.-H. Kwon, Liquid Phase Sintering: Ceramics, in: K.H. Jürgen Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer, S. Mahajan, P. Veyssière (Eds.), Encyclopedia of Materials: Science and Technology, Elsevier, Amsterdam, New York, 2001, 4597-4601. DOI: https://doi.org/10.1016/B0-08-043152-6/00803-2
  • [54] A.R. Bhatti, P.M. Farries, Preparation of Long-fiberreinforced Dense Glass and Ceramic Matrix Composites, in: A. Kelly, C. Zweben (Eds.), Comprehensive Composite Materials, Vol. 4, Carbon/Carbon, Cement, and Ceramic Matrix Composites, Elsevier, Amsterdam, New York, 2000, 645-667. DOI: https://doi.org/10.1016/B0-08-042993-9/00107-8
  • [55] M.N. Rahaman, Ceramic processing and sintering, CRC Press, Boca Raton, 2017.
  • [56] G. Hoyle, High Speed Steels, Butterworth and Co. Ltd, Cambridge, 1988.
  • [57] J. Konstanty, Powder Metallurgy Diamond Tools, Elsevier, Oxford, 2005.
  • [58] J. Lezanski, T. Pieczonka, E. Dudrova, F. Molnar, A. Cias, The effect of carbon, copper and boron additions on the sintering process of high speed M2 steel, Metallurgy - Metallurgical News 12 (1993) 396-402 (in Polish).
  • [59] W. Schatt, K.P. Wieters, Powder Metallurgy, Processing and materials, EPMA, Shrewsbury, UK, 1997.
  • [60] A.E. Tomiczek, L.A. Dobrzański, M. Macek, Effect of milling time on microstructure and properties of AA6061/MWCNTS composite powders, Archives of Metallurgy and Materials 60/4 (2015) 3029-3034. DOI: https://doi.org/10.1515/amm-2015-0484
  • [61] B. Tomiczek, M. Pawlyta, M. Adamiak, L.A. Dobrzański, Effect of milling time on microstructure of AA6061 composites fabricated via mechanical alloying, Archives of Metallurgy and Materials 60/2 (2015) 789793. DOI: https://doi.org/10.1515/amm-2015-0208
  • [62] L.A. Dobrzański, B. Tomiczek, M. Pawlyta, M. Król, Aluminium AlMg1SiCu matrix composite materials reinforced with halloysite particles, Archives of Metallurgy and Materials 59/1 (2014) 335-338. DOI: https://doi.org/10.2478/amm-2014-0055
  • [63] W. Jones, Fundamental principles of powder metallurgy, Edward Arnold Publishers Ltd., London, 1960.
  • [64] G. Dowson, D. Whittaker, Introduction to powder metallurgy. The process and its products, EPMA, Shrewsbury, UK, 1992 and 2008.
  • [65] A. Ruys, O. Gingu, G. Sima, S. Maleksaeedi, Powder processing of bulk components in manufacturing, in: A.Y.C. Nee (Ed.), Handbook of Manufacturing Engineering and Technology, Springer-Verlag, London, 2015, 487-566. DOI: https://doi.org/10.1007/978-14471-4670-4_48
  • [66] H.V. Atkinson, S. Davies, Fundamental aspects of hot isostatic pressing: an overview, Metallurgical and Materials Transactions A 31 (2000) 2981-3000. DOI: https://doi.org/10.1007/s11661-000-0078-2
  • [67] F.H. Froes, M.A. Qian, A perspective on the future of titanium powder metallurgy, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth‐Heinemann, Waltham, USA – Oxford, UK, 2015, 602-608. DOI: https://doi.org/10.1016/B978-0-12-800054-0.00031-9
  • [68] V. Samarov, D. Seliverstov, F.H. Froes, Fabrication of near‐net‐shape cost‐effective titanium components by use of prealloyed powders and hot isostatic pressing, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy: Science, Technology and Applications, Butterworth‐Heinemann, Waltham, USA – Oxford, UK, 2015, 313-336. DOI: https://doi.org/10.1016/B978-012-800054-0.00018-6
  • [69] W.B. James, Powder forging, Reviews in Particulate Materials 2 (1994) 173-214.
  • [70] J.-O. Park, K.J. Kim, D.Y. Kang, Y.S. Lee, Y.-H. Kim, An experimental study on the optimization of powder forging process parameters for an aluminum-alloy piston, Journal of Materials Processing Technology 113/1-3 (2001) 486-492. DOI: https://doi.org/10.1016/S0924-0136(01)00663-X
  • [71] M. Tokita, Development of Large-size Ceramic/Metal Bulk FGM. Fabricated by Spark Plasma Sintering, Materials Science Forum 308-311 (1999) 83-88. DOI: http://dx.doi.10.3989/10.4028/www.scientific.net/MS F.308-311.83
  • [72] J.M. Torralba, Improvement of Mechanical and Physical Properties in Powder Metallurgy, in: S. Hashmi, G.F. Batalha, C.J. Van Tyne, B. Yilbas (Eds.), Comprehensive Materials Processing, Volume 3: Advanced Forming Technologies, Elsevier, Amsterdam, 2014, 281-294. DOI: https://doi.org/10.1016/B978-0-08096532-1.00316-2
  • [73] E.V. Aleksandrova, A.M. Ilyina, E.G. Grigoryev, E.A. Olevsky, Contribution of electric current into densification kinetics during spark plasma sintering of conductive powder, Journal of the American Ceramic Society 98/11 (2015) 3509-3517. DOI: https://doi.org/10.1111/jace.13816
  • [74] J.E. Alaniz, A.D. Dupuy, V. Kodera, J.E. Garay, Effects of applied pressure on the densification rates in currentactivated pressure-assisted densification (CAPAD) of nanocrystalline materials, Scripta Materialia 92 (2014) 7-10. DOI: https://doi.org/10.1016/j.scriptamat.2014.07.015
  • [75] Z.A. Munir, U. Anselmi-Tamburini, M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science 41/3 (2006) 763-777. DOI: https://doi.org/10.1007/s10853-006-6555-2
  • [76] M.S. Yurlova, V.D. Demenyuk, L.Y. Lebedeva, D.V. Dudina, E.G. Grigoryev, E.A. Olevsky, Electric pulse consolidation: an alternative to spark plasma sintering, Journal of Materials Science 49/3 (2014) 952-985. DOI: https://doi.org/10.1007/s10853-013-7805-8
  • [77] A. Fais, M. Actis Grande, I. Forno, Influence of processing parameters on the mechanical properties of electro-sinter-forged iron based powders, Materials and Design 93 (2016) 458-466. DOI: https://doi.org/10.1016/j.matdes.2015.12.142
  • [78] I. Forno, M. Actis Grande, A. Fais, On the application of electro‐sinter‐forging to the sintering of highkaratage gold powders, Gold Bulletin 48 (2015) 127133. DOI: https://doi.org/10.1007/s13404-015-0169-x
  • [79] H.-T. Lin, B.-Z. Liu, W.-H Chen, J.-L. Huang, P.K. Nayak, Study of color change and microstructure development of Al2O3–Cr2O3/Cr3C2 nanocomposites prepared by spark plasma sintering, Ceramics International 37/7 (2011) 2081-2087. DOI: https://doi.org/10.1016/j.ceramint.2011.02.018
  • [80] P. Alvaredo, E. Gordo, O. van der Biest, K. Vanmeensel, Microstructural development and mechanical properties of iron based cermets processed by pressureless and spark plasma sintering, Materials Science and Engineering: A 538 (2012) 28-34. DOI: https://doi.org/10.1016/j.msea.2011.12.107
  • [81] S. Grasso, Y. Sakka, G. Maizza, Electric current activated/assisted sintering (ECAS): a review of patents 1906-2008, Science and Technology of Advanced Materials 10/5 (2009) 053001. DOI: https://doi.org/10.1088/1468-6996/10/5/053001
  • [82] A.T. Wieg, Current Activated Pressure Assisted Densification (CAPAD) Processing of Ceramics Doped with Rare Earths for Functionality, University of California, Riverside, 2009.
  • [83] G. Xie, M. Song, K. Mitsuishi, K. Furuya, Characterization of metal nanoparticles fabricated in ordered array pores of anodic porous alumina by electron-beam-induced selective deposition, Applied Surface Science 241/1-2 (2005) 91-95. DOI: https://doi.org/10.1016/j.apsusc.2004.09.023
  • [84] K. Vanmeensel, A. Laptev. J. Hennicke, J. Vleugels, O. Van der Biesta, Modelling of the temperature distribution during field assisted sintering, Acta Materialia 53/16 (2005) 4379-4388. DOI: https://doi.org/10.1016/j.actamat.2005.05.042
  • [85] O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, M. Herrmann, Field‐Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments, Advanced Engineering Materials 16/7 (2014) 830-849. DOI: https://doi.org/10.1002/adem.201300409
  • [86] C. Montealegre-Melendez, E. Arévalo, E. Ariza, E.M. Pérez-Soriano, C. Rubio-Escudero, M. Kitzmantel, E. Neubauer, Analysis of the Microstructure and Mechanical Properties of Titanium-Based Composites Reinforced by Secondary Phases and B4C Particles Produced via Direct Hot Pressing, Materials 10/11 (2017) 1240. DOI: https://doi.org/10.3390/ma10111240
  • [87] E. Neubauer, M. Kitzmantel, W. Kapaun, I. Kalafatis, G. Kladler, Potential and Challenges of Direct Hot Pressing for Manufacturing of Advanced Materials at Temperatures up to 2.400°C, Proceedings of the PM2010 World Congress “PM HIP”, EPMA, Florence, 2010.
  • [88] E. Cannella, C.V. Nielsen, N. Bay, On the Process and Product Fingerprints for Electro Sinter Forging (ESF), Micromachines 10/4 (2019) 218. DOI: https://doi.org/10.3390/mi10040218
  • [89] R. Muñoz-Moreno, M. Ruiz-Navas, B. Srinivasarao, J.M. Torralba, Microstructural Development and Mechanical Properties of PM Ti-45Al-2Nb-2Mn-0.8 vol.% TiB2 Processed by Field Assisted Hot Pressing, Journal of Materials Science & Technology 30/11 (2014) 11451154. DOI: https://doi.org/10.1016/j.jmst.2014.08.008
  • [90] I.J. Shon, Z.A. Munir, Synthesis of MoSi2-xNb and MoSi2-yZrO2 composites by the field-activated combustion method, Materials Science and Engineering: A 202/1-2 (1995) 256-261. DOI: https://doi.org/10.1016/0921-5093(95)09800-3
  • [91] R.S. Mishra, A.K. Mukherjee, Electric pulse assisted rapid consolidation of ultrafine grained alumina matrix composites, Materials Science and Engineering: A 287/2 (2000) 178-182. DOI: https://doi.org/10.1016/S09215093(00)00772-3
  • [92] J.M. Torralba, M. Campos, Toward high performance in Powder Metallurgy, Revista de Metalurgia 50/2 (2014) 1-13. DOI: http://dx.doi.org/10.3989/revmetalm.017
  • [93] M. Gagliardi, Global Markets for Spark Plasma Sintering and Other Advanced Sintering Technologies, BCC Research Report Overview AVM146A (2018) 114. Available at: https://www.bccresearch.com/marketresearch/advanced-materials/global-markets-for-sparkplasma-sintering-and-other-advanced-sinteringtechnologies.html
  • [94] L. Ding, D.P. Xiang, Y.Y. Li, Y.W. Zhao, J.B. Li, Phase, microstructure and properties evolution of finegrained W-Mo-Ni-Fe alloy during spark plasma sintering, Materials and Design 37 (2012) 8-12. DOI: https://doi.org/10.1016/j.matdes.2011.12.010
  • [95] A.Y. Fong, H. Xu, K. Page, M.R. Dirmyer, Y. Kodera, S.I. Obrey, J.E. Garay, Synthesis and structural characterization of dense polycrystalline Mg9Sn5, a metastable Mg-Sn phase, Journal of Alloys and Compounds 616 (2014) 333-339. DOI: https://doi.org/10.1016/j.jallcom.2014.07.122
  • [96] J. Guo, J. Li, H. Kou, Chemical Preparation of Advanced Ceramic Materials, in: R. Xu, W. Pang, Q. Huo (Eds.), Modern Inorganic Synthetic Chemistry, Elsevier, Amsterdam, 2011, 429-454. DOI: https://doi.org/10.1016/B978-0-444-53599-3.10019-8
  • [97] M.R. Mphahlele, E.A. Olevsky, P.A. Olubambi, Spark plasma sintering of near net shape titanium aluminide: A review, in: G. Cao, C. Estournès, J. Garay, R. Orrù (Eds.), Spark Plasma Sintering; Current status, new developments and challenges, Elsevier, Amsterdam, 2019, 281-299. DOI: https://doi.org/10.1016/B978-012-817744-0.00012-X
  • [98] L.A. Dobrzański, B. Tomiczek, M. Macek, Fabrication, Composition, Properties and Application of the AlMg1SiCu Aluminium Alloy Matrix Composite Materials Reinforced with Halloysite or Carbon Nanotubes, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, 2017, 139-160. DOI: https://doi.org/10.5772/65399
  • [99] M. Nygren, Z. Shen, Novel assemblies via spark plasma sintering, Silicates Industries 69/7 (2004) 211-218.
  • [100] B. Basu, J.H. Lee, D.Y. Kim, Development of Nanocrystalline Wear‐Resistant Y‐TZP Ceramics, Journal of the American Ceramic Society 87/9 (2004) 1771-1774. DOI: https://doi.org/10.1111/j.15512916.2004.01771.x
  • [101] Z. Shen, H. Peng, M. Nygren, Formidable Increase in the Superplasticity of Ceramics in the Presence of an Electric Field, Advanced Materials 15/12 (2003) 10061009. DOI: https://doi.org/10.1002/adma.200304863
  • [102] M. Yue, J. Zhang, Y. Xiao, G. Wang, T. Li, New kind of NdFeB magnet prepared by spark plasma sintering, IEEE Transactions on Magnetics 39/6 (2003) 3551-3553. DOI: https://doi.org/10.1109/TMAG.2003.819459
  • [103] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Overcoming the effect of contaminant in solid oxide fuel cell (SOFC) electrolyte: spark plasma sintering (SPS) of 0.5 wt.% silica-doped yttria-stabilized zirconia (YSZ), Materials Science and Engineering: A 374/1-2 (2004) 64-71. DOI: https://doi.org/10.1016/j.msea.2003.12.028
  • [104] L. Zhou, Z. Zhao, A. Zimmermann, F. Aldinger, M. Nygren, Preparation and Properties of Lead Zirconate Stannate Titanate Sintered by Spark Plasma Sintering, Journal of the American Ceramic Society 87/4 (2004) 606-611. DOI: https://doi.org/10.1111/j.15512916.2004.00606.x
  • [105] T. Takeuchi, E. Bétourné, M. Tabuchi, H. Kageyama, Y. Kobayashi, A. Coats, F. Morrison, D.C. Sinclair, A.R. West, Dielectric properties of spark-plasmasintered BaTiO3, Journal of Materials Science 34 (1999) 917-924. DOI: https://doi.org/10.1023/A:1004506905278
  • [106] X. Su, P. Wang, W. Chen, Z. Shen, M. Nygren, Y. Cheng, D. Yan, Optical properties of SPS-ed Y- and (Dy,Y)-α-sialon ceramics, Journal of Materials Science 39 (2004) 6257-6262. DOI: https://doi.org/10.1023/B:JMSC.0000043595.90720.23
  • [107] S.H. Risbud, J.R. Groza, M.J. Kim, Clean grain boundaries in aluminium nitride ceramics densified without additives by a plasma-activated sintering process, Journal Philosophical Magazine B 69/3 (1994) 525-533. DOI: https://doi.org/10.1080/01418639408240126
  • [108] H. Furuhata, Effect of Roughness on the Joints of Bonded SUS304 Stainless Steel using a pulse Electric Current Bonding Process, Journal of Japan Institute Metals 67/9 (2003) 448-451. DOI: https://doi.org/10.2320/jinstmet1952.67.9_448
  • [109] M. Tokita, Spark plasma sintering (SPS) Method, systems, and application, in: S. Somiya (Ed.), Handbook of advanced ceramics: materials, applications, processing, and properties, Second Edition, Academic Press, Waltham, 2013, 1149-1177. DOI: https://doi.org/10.1016/B978-0-12-385469-8.00060-5
  • [110] M. Karimi-Jafari, K. Kowal, E. Ul-Haq, S.A.M. Tofail, Spark plasma sintering of lead-free ferroelectric ceramic layers, in: M.S.J. Hashmi (Ed.), Comprehensive materials finishing, Volume 3, Elsevier, Waltham, 2017, 347-357. DOI: https://doi.org/10.1016/B978-0-12-803581-8.09203-1
  • [111] S. Kinbara, H. Izui, M. Okano, Mechanical properties of SiC/Ti-15V-3Cr-3Sn-3Al composites by spark plasma sintering, Novel Materials Processing by Advanced Electromagnetic Energy Sources, Proceedings of the International Symposium on Novel Materials Processing by Advanced Electromagnetic Energy Sources Osaka, Japan, 2004, 321-324. DOI: https://doi.org/10.1016/B978-008044504-5/50067-2
  • [112] Y.F. Yang, M. Qian, Spark plasma sintering and hot pressing of titanium and titanium alloys, in: M. Qian, F.H. Froes (Eds.), Titanium Powder Metallurgy: Science, Technology and Applications, ButterworthHeinemann, Waltham, MA, USA – Oxford, UK, 2015, 219-235. DOI: https://doi.org/10.1016/B978-0-12800054-0.00013-7
  • [113] M. Suárez, A. Fernández, J.L. Menéndez, R. Torrecillas, H.U. Kessel, J. Hennicke, R. Kirchner, T. Kessel, Challenges and Opportunities for Spark Plasma Sintering: A Key Technology for a New Generation of Materials, in: B. Ertuğ (Ed.), Sintering Applications, IntechOpen, 2013, 319-342. DOI: https://doi.org/10.5772/53706
  • [114] HYMacer-HYbrid sintering and advanced Machining of technical CERamics, Research funded by the European Commission's 7th Framework THEME [SME-2013-1], Research for SMEs - Grant agreement No 606390 Hosted by KU Leuven ‒ Mechanical Engineering, Belgium. Available at: https://www.hymacer.eu/index.html
  • [115] W. Sutton, Microwave processing of ceramic materials, American Ceramic Society Bulletin 68 (1989) 376-386.
  • [116] R. Roy, D. Agrawal, J. Cheng, S. Gedevanishvili, Full sintering of powdered-metal bodies in a microwave field, Nature 399 (1999) 668-670. DOI: https://doi.org/10.1038/21390
  • [117] G. Matula, Gradient surface layers from tool cermets formed pressurelessly and sintered, International OCSCO World Press, Gliwice, Poland, 2012.
  • [118] Y. Harayama, Society 5.0: Aiming for a New HumanCentered Society, Hitachi Review 66/6 (2017) 8-13.
  • [119] F. Petzoldt, Metal injection moulding in Europe: ten facts that you need to know, Powder Injection Moulding International 1/2 (2007) 23-28.
  • [120] M. Hultgren, As hard as they come – new grades with metal injection moulding. The shape of things to come, Metalworking World 2 (2006)14-16.
  • [121] A.D. Dobrzańska-Danikiewicz, The acceptation of the production orders for the realisation in the manufacturing assembly systems, Journal of Materials Processing Technology 175/1-3 (2006) 123-132. DOI: https://doi.org/10.1016/j.jmatprotec.2005.04.001
  • [122] D. Krenczyk, A.D. Dobrzańska-Danikiewicz, The deadlock protection method used in the production systems, Journal of Materials Processing Technology 164-165 (2005) 1388-1394. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.056
  • [123] R.M. German, Divergences in global powder injection moulding, Powder Injection Moulding International 2 (2008) 45-49.
  • [124] S. Atre, T. Weaver, R.M. German, Injection Molding of Metals and Ceramics, SAE Technical Paper 982417 (1998) 1-7. DOI: https://doi.org/10.4271/982417
  • [125] H.M. Wiśniewska-Weinert, Composites with graphenelike sulfide nanoparticles, International OCSCO World Press, Gliwice, Poland, 2012.
  • [126] R. Zauner, Micro powder injection moulding, Microelectronic Engineering 83/4-9 (2006) 1442-1444. DOI: https://doi.org/10.1016/j.mee.2006.01.170
  • [127] R.M. German, Powder Injection Molding – Design and Application – User’s Guide, Innovative Material Solutions, Inc., State College, PA, 2003.
  • [128] T.N. Baker, Processes, microstructure and properties of vanadium microalloyed steels, Materials Science and Technology 25/9 (2009) 1083-1107. DOI: https://doi.org/10.1179/174328409X453253
  • [129] T. Benzler, P. Volker, R. Ruprecht, J. Hausselt, Fabrication of Microstructures by MIM and CIM, Proceedings of the Powder Metallurgy World Congress PM, EPMA, Granada, 1998.
  • [130] B. Berginc, Z. Kampuš, B. Šuštarši, The use of the Taguchi approach to the influence of injectionmoulding on the properties of green parts, Journal of Achievements in Materials and Manufacturing Engineering 15/1-2 (2006) 63-70.
  • [131] D. Biało, A. Skalski, L. Paszkowski, Specification of the microelement injection molding process from metal powders, Ores and Non-Ferrous Metals 4 (2008) 241-245 (in Polish).
  • [132] L. Castro, S. Merino, B. Levenfeld, A. Várez, J.M. Torralba, Mechanical properties and pitting corrosion behaviour of 316L Stainless Steel parts obtained by a modified Metal Injection Moulding process, Proceedings of the International Conference Advanced Materials Processing Technologies “AMPT’01”, Madrid, 2001, 345.
  • [133] J. Czechowski, Current status and perspectives of ceramic injection molding, Refractory Materials 41 (1989) 122-125 (in Polish).
  • [134] L.A. Dobrzański, G. Matula, K. Gołombek, Structure and properties of mechanically sintered M2 and T15 high speed steel manufactured by powder injection molding, Proceedings of the International Conference Materials, Mechnical and Manufacturing Engineering “M3E’2000”, Gliwice, 2000, 79-83 (in Polish).
  • [135] G. Goudah, F. Ahmad, O. Mamat, M.A. Omar, Preparation and Characterization of Cooper Feedstock for Metal Injection Moulding, Journal of Applied Sciences 10/24 (2010) 3295-3300. DOI: https://doi.org/10.3923/jas.2010.3295.3300
  • [136] G. Herranz, G.P. Rodríguez, R. Alonso, G. Matula, Sintering process of M2 HSS feedstock reinforced with carbides, Powder Injection Moulding International 4/2 (2010) 60-65.
  • [137] L. Liu, N.H. Loh, B.Y. Tay, S.B. Tor, Y. Murakoshi, R. Maeda, Mixing and characterization of 316L stainless steel feedstock for micro powder injection molding, Materials Characterization 54/3 (2005) 230-238. DOI: https://doi.org/10.1016/j.matchar.2004.11.014
  • [138] Z.Y. Liu, N.H. Loh, K.A. Khor, S.B. Tor, Sintering of injection molded M2 high-speed steel, Materials Letters 45/1 (2000) 32-38. DOI: https://doi.org/10.1016/S0167-577X(00)00070-7
  • [139] G. Matula, L.A. Dobrzański, G. Herranz, A. Várez, B. Levenfeld, J.M. Torralba, Structure and properties of HS6-5-2 type HSS manufactured by different P/M methods, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 71-74.
  • [140] G. Matula, Influence of binder composition on structure and properties of carbide alloyed composite manufactured with the PIM method, Proceedings of the 12th International Materials Symposium, Pamukkale-Denizli, 2008, 601-605.
  • [141] A. Várez, P. Thomas-Vielma, A. Cervera, B. Levenfeld, Production of alumina parts by powder injection molding with a binder system based on high density polyethylene, Journal of the European Ceramic Society 28/4 (2008) 763-771. DOI: https://doi.org/10.1016/j.jeurceramsoc.2007.08.004
  • [142] R.M. German, Global research and development in powder injection moulding, Powder Injection Moulding International 1/2 (2007) 33-36.
  • [143] R.M. German, Alternatives to powder injection moulding: variants on almost the same theme, Powder Injection Moulding International 4/2 (2010) 31-40.
  • [144] H.K. Lin, K.S. Hwang, In situ dimensional changes of powder injection-molded compacts during solvent debinding, Acta Materialia 46/12 (1998) 4303-4309. DOI: https://doi.org/10.1016/S1359-6454(98)00093-7
  • [145] N.H. Loh, S.B. Tor, K.A. Khor, Production of metal matrix composite part by powder injection molding, Journal of Materials Processing Technology 108/3 (2001) 398-407. DOI: https://doi.org/10.1016/S09240136(00)00855-4
  • [146] V. Piotter, PIM looks for role in the micro world, Metal Powder Report 54/6 (1999) 36-39. DOI: https://doi.org/10.1016/S0026-0657(99)80508-6
  • [147] R. Vetter, M.J. Sanders, I. Majewska-Glabus, L.Z. Zhuang, J. Duszczyk, Wick Debinding in Powder Injection Molding, International Journal of Powder Metallurgy 30 (1994) 115-124.
  • [148] L.A. Dobrzański, G. Matula, Powder Injection Molding of tool materials and materials containing onedimensional nanostructural elements, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 223243. DOI: https://doi.org/10.5772/67353
  • [149] L.A. Dobrzański, Goals and Contemporary Position of Powder Metallurgy in Products Manufacturing, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, Croatia, 2017, 1-15. DOI: https://doi.org/10.5772/65378
  • [150] B. Levenfeld, A. Várez, L. Castro, J.C. Del Real, J.M. Torralba, Effect of incomplete debinding on sintering process of P/M M2 high speed steel parts obtained by a modified MIM process, Proceedings of the 8th International Conference Achievements in Mechanical and Materials Engineering “AMME´99”, Gliwice-Rydzyna-Rokosowo, 1999.
  • [151] S.T. Lin, R.M. German, Extraction Debinding of Injection Molded Parts by Condensed Solvent, Powder Metallurgy International 21/5 (1989) 19-24.
  • [152] V.B. Ricardo Oliveira, V. Soldi, M.C. Fredel, A.T.N. Pires, Ceramic injection moulding: influence of specimen dimensions and temperature on solvent debinding kinetics, Journal of Materials Processing Technology 160/2 (2005) 213-220. DOI: https://doi.org/10.1016/j.jmatprotec.2004.06.008
  • [153] Y. Shengjie, Y.C. Lam, J.C. Chai, K.C. Tam, Simulation of thermal debinding: effects of mass transport on equivalent stress, Computational Materials Science 30/3-4 (2004) 496-503. DOI: https://doi.org/10.1016/j.commatsci.2004.02.042
  • [154] G. Herranz, B. Levenfeld, A. Várez, J.M. Torralba, Development of new feedstock formulation based on high density polyethylene for MIM of M2 high speed steel, Powder Metallurgy 48/2 (2005) 134-138,DOI: https://doi.org/10.1179/003258905X37828
  • [155] R.M. German, Markets applications, and financial aspects of global metal powder injection moulding (MIM) technologies, Metal Powder Report 67/1 (2012) 18-26. DOI: https://doi.org/10.1016/S00260657(12)70051-6
  • [156] G. Herranz, R. Nagel, R. Zauner, B. Levenfeld, A. Várez, J.M. Torralba, Influence of powder surface treatment with stearic acid on powder injection moulding of M2 HSS using a HDPE based binder, Proceedings of the International Congress and Exhibition Powder Metallurgy “PM 2004”, Viena, 2004, 397-402.
  • [157] L.A. Dobrzański, G. Matula, A. Várez, B. Levenfeld, J.M. Torralba, Fabrication methods and heat treatment conditions effect on tribological properties of high speed steels, Journal of Materials Processing Technology 157-158 (2004) 324-330. DOI: https://doi.org/10.1016/j.jmatprotec.2004.09.051
  • [158] M.J. Edinsinghe, J.R.G. Evens, Review: fabrication of engineering ceramics by injection moulding. I. materials selection, International Journal of High Technology Ceramics 2/1 (1986) 1-31. DOI: https://doi.org/10.1016/0267-3762(86)90002-0
  • [159] K. Gołombek, Structure and properties of injection moulding tool materials with nanocrystalline coatings, International OCSCO World Press, Gliwice, Poland, 2013 (in Polish).
  • [160] H. Ye, X.Y. Liu, H. Hong, Fabrication of metal matrix composites by metal injection molding – a review, Journal of Materials Processing Technology 200/1-3 (2008) 12-24. DOI: https://doi.org/10.1016/j.jmatprotec.2007.10.066
  • [161] L.A. Dobrzański, B. Dołżańska, G. Matula, Structure and properties of tool gradient materials reinforced with the WC carbides, Archives of Materials Science and Engineering 28/1 (2008) 35-38.
  • [162] G. Herranz, G. Matula, R. Alonso, I. Sánchez, G. Rodríguez, Metal Injection Moulding of Carbides Reinforced M2 HSS, Proceedings of the International Congress and Exhibition Powder Metallurgy “Euro PM 2009”, Powder Injection Moulding – Compounds and Composite Parts, Copenhagen, 2009, 99-104.
  • [163] G. Matula, L.A. Dobrzański, A. Várez, B. Levenfeld, J.M. Torralba Comparison of structure and properties of the HS12-1-5-5 type high- speed steel fabricated using the pressureless forming and PIM methods, Journal of Materials Processing Technology 162-163 (2005) 230-235. DOI: https://doi.org/10.1016/j.jmatprotec.2005.02.166
  • [164] A. Várez, B. Levenfeld, J.M. Torralba, G. Matula, L.A. Dobrzański, Sintering in different atmospheres of T15 and M2 high speed steels produced by modified metal injection moulding process, Materials Science and Engineering: A 366/2 (2004) 318-324. DOI: https://doi.org/10.1016/j.msea.2003.08.028
  • [165] L.A. Dobrzański, A.D. Dobrzanska-Danikiewicz, Engineering materials surface treatment, International OCSCO World Press, Gliwice, Poland, 2011 (in Polish).
  • [166] L.A. Dobrzański, A. Kloc-Ptaszna, Structure and properties of the gradient tool materials based on a high-speed steel HS6-5-2 reinforced with WC or VC carbides, Journal of Achievements in Materials and Manufacturing Engineering 37/2 (2009) 213-237.
  • [167] A. Simchi, F. Petzoldt, Cosintering of Powder Injection Molding Parts Made from Ultrafine WC-Co and 316L Stainless Steel Powders for Fabrication of Novel Composite Structures, Metallurgical and Materials Transactions A 41 (2010) 233-241. DOI: https://doi.org/10.1007/s11661-009-0045-5
  • [168] T. Li, Q. Li, J.Y.H. Fuh, P. Ch. Yu, L. Lu, Twomaterial powder injection molding of functionally graded WC-Co components, International Journal of Refractory Metals and Hard Materials 27/1 (2009) 95100. DOI: https://doi.org/10.1016/j.ijrmhm.2008.04.005
  • [169] A. Baumann, M. Brieseck, S. Höhn, T. Moritz, R. Lenk, Developments in multi-component powder injection moulding of steel-ceramic compounds using green tapes for in mould label process, Powder Injection Moulding International 2/1 (2008) 55-58.
  • [170] L.A. Dobrzański, G. Matula, A. Várez, B. Levenfeld, J.M. Torralba, Structure and properties of the heattreated high-speed steel HS6-5-2 and HS12-1-5-5 produced by Powder Injection Molding process, Materials Science Forum 437-438 (2003) 133-136. DOI: https://doi.org/10.4028/www.scientific.net/MSF.437438.133
  • [171] R. Cornwall, PIM 2001 airs industry's successes and challenges, Metal Powder Report 56/6 (2001) 10-13. DOI: https://doi.org/10.1016/S0026-0657(01)80321-0
  • [172] B. Decaudin, C. Djega-Mariadassou, G. Cizeron, Structural study of M50 steel carbides, Journal of Alloys and Compounds 226/1-2 (1995) 208-212. DOI: https://doi.org/10.1016/0925-8388(95)01616-3
  • [173] A.D. Dobrzanska-Danikiewicz, Computer integrated development prediction methodology in materials surface engineering, International OCSCO World Press, Gliwice, Poland, 2012 (in Polish).
  • [174] A.D. Dobrzanska-Danikiewicz (Ed.), Materials surface engineering development trends, International OCSCO World Press, Gliwice, Poland, 2011.
  • [175] G. Kaupp, Reactive milling with metals for environmentally benign sustainable production, CrystEngComm 13/9 (2011) 3108-3121. DOI: https://doi.org/10.1039/C1CE05085K
  • [176] J.M. Torralba, L. Fuentes‐Pacheco, N. Garcia-Rodriguez, M. Campos, Development of high performance powder metallurgy steels by high-energy milling, Advanced Powder Technology 24/5 (2013) 813-817. DOI: https://doi.org/10.1016/j.apt.2012.11.015
  • [177] P.H. Shingu (Ed.), Special issue on mechanical alloying, Materials Transactions of the Japan Institute of Metals 36/2 (1995) 83-388.
  • [178] R.B. Schwarz (Ed.), “Viewpoint set on mechanical alloying, Scripta Materialia 34/1 (1996) 1-73.
  • [179] J.J. Dunkley, Advances in atomisation techniques for the formation of metal powders, in: I. Chang, Y. Zhao (Eds.), Advances in powder metallurgy: properties, processing and applications, Woodhead Publishing, Cambridge, UK, 2013, 3-18. DOI: https://doi.org/10.1533/9780857098900.1.3
  • [180] J.S. Benjamin, Dispersion strengthened superalloys by mechanical alloying, Metallurgical Transactions 1/10 (1970) 2943-2951. DOI: https://doi.org/10.1007/BF03037835
  • [181] T. Gheiratmand, H.R. Madaah Hosseini, P. Davami, M. Gjoka, M. Song, The effect of mechanical milling on the soft magnetic properties of amorphous FINEMET alloy, Journal of Magnetism and Magnetic Materials 381 (2015) 322-327. DOI: https://doi.org/10.1016/j.jmmm.2015.01.016
  • [182] J.S. Benjamin, T.E. Volin, The mechanism of mechanical alloying, Metallurgical Transaction 5 (1974) 19291934. DOI: https://doi.org/10.1007/BF02644161
  • [183] J.S. Benjamin, Mechanical Alloying, Scientific American 234/5 (1976) 40-49. Available at: https://www.jstor.org/stable/24950349
  • [184] P.S. Gilman, J.S. Benjamin, Mechanical alloying, Annual Review of Materials Science 13 (1983) 279-300. DOI: https://doi.org/10.1146/annurev.ms.13.080183.001431
  • [185] J.S. Benjamin, Novel Powder Processing, Proceedings of the 1992 Powder Metallurgy World Congress, Publ. Metal powder Industries, San Francisco, CA, 1992, 155.
  • [186] A.W. Weeber, H. Bakker, F.R. de Boer, The preparation of amorphous Ni-Zr powder by grinding the crystalline alloy, Europhysics Letters 2/6 (1986) 445453. DOI: https://doi.org/10.1209/0295-5075/2/6/006
  • [187] E. Gregory, N.J. Grant, High temperature strength of wrought aluminum powder products, JOM 6 (1954) 247-252. DOI: https://doi.org/10.1007/BF03398006
  • [188] M.S. El-Eskandarany, K. Aoki, K. Suzuki, Rod milling for solid-state formation of Al30Ta70 amorphous alloy powder, Journal of the Less Common Metals 167/1 (1990) 113-118. DOI: https://doi.org/10.1016/0022-5088(90)90295-U
  • [189] C.C. Koch, Synthesis of nanostructured materials by mechanical milling: problems and opportunities, Nanostructured Materials 9/1-8 (1997) 13-22. DOI: https://doi.org/10.1016/S0965-9773(97)00014-7
  • [190] R. Irmann, Sintered Aluminum with High Strength at Elevated Temperatures, Metallurgia 40 (1952) 125.
  • [191] F.V. Lenel, A.B. Backensto, M.V. Rose, Properties of aluminum powders and of extrusions produced from them, JOM 9 (1957) 124-130. DOI: https://doi.org/10.1007/BF03398469
  • [192] L.L. Hsiung, M.J. Fluss, A. Kimura, Structure of oxide nanoparticles in Fe‐16Cr MA/ODS ferritic steel, Materials Letters 64/16 (2010) 1782-1785. DOI: https://doi.org/10.1016/j.matlet.2010.05.039
  • [193] I. Baker, B. Iliescu, J. Li, H.J. Frost, Experiments and simulations of directionally annealed ODS MA 754, Materials Science and Engineering: A 492/1-2 (2008) 353-363. DOI: https://doi.org/10.1016/j.msea.2008.03.032
  • [194] M.K. Miller, D.T. Hoelzer, E.A. Kenik, K.F. Russell, Nanometer scale precipitation in ferritic MA/ODS alloy MA957, Journal of Nuclear Materials Part A 329-333 (2004) 338-341. DOI: https://doi.org/10.1016/j.jnucmat.2004.04.085
  • [195] N.Y. Iwata, T. Liu, P. Dou, R. Kasada, A. Kimura, T. Okuda, M. Inoue, F. Abe, S. Ukai, S. Ohnuki, T. Fujisawa, Effects of MA environment on the mechanical and microstructural properties of ODS ferritic steels, Journal of Nuclear Materials 417/1-3 (2011) 162-165. DOI: https://doi.org/10.1016/j.jnucmat.2010.12.058
  • [196] L.A. Dobrzański, A. Achtelik-Franczak, Structure and properties of composite materials for medical applications with a matrix of aluminum alloys reinforced with titanium skeletons produced by the method of selective laser sintering, in: L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz (Eds.), Microporous and solid metallic materials for medical and dental application, International OCSCO World Press, Gliwice, Poland, 2017, 376-433 (in Polish).
  • [197] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, Metallic skeletons as reinforcement of new composite materials applied in orthopaedics and dentistry, Archives of Materials Science and Engineering 92/2 (2018) 53-85. DOI: https://doi.org/10.5604/01.3001.0012.6585
  • [198] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, The new generation of the biological-engineering materials for applications in medical and dental implant-scaffolds, Archives of Materials Science and Engineering 91/2 (2018) 56-85. DOI: https://doi.org/10.5604/01.3001.0012.5490
  • [199] A.K. Kaw, Mechanics of composite materials, Second Edition, CRC Press, Boca Raton, 2006.
  • [200] K.K. Chawla, Ceramic matrix composites, Second Edition, Kluwer Academic Publishers, Boston, 2003.
  • [201] K. Okada, M. Shimizu, T. Isobe, Y. Kameshima, M. Sakaic, A. Nakajim, T. Kurata, Characteristics of microbubbles generated by porous mullite ceramics prepared by an extrusion method using organic fibers as the pore former, Journal of the European Ceramic Society 30/6 (2010) 1245-1251. DOI: https://doi.org/10.1016/j.jeurceramsoc.2009.11.003
  • [202] G.L. Chen, H. Qi, W.H. Xing, N.P. Xu, Direct preparation of microporous mullite supports for membranes by in situ reaction sintering, Journal of Membrane Science 318/1-2 (2008) 38-44. DOI: https://doi.org/10.1016/j.memsci.2008.01.034
  • [203] S.H. Li, H.Y. Du, A.R. Guo, H. Xu, D. Yang, Preparation of self-reinforcement of porous mullite ceramics through in situ synthesis of mullite whisker in fly ash body, Ceramics International 38/2 (2012) 1027-1032. DOI: https://doi.org/10.1016/j.ceramint.2011.08.026
  • [204] R.P. Liu, C.A. Wang, Effects of mono-dispersed PMMA micro-balls as pore-forming agent on the properties of porous YSZ ceramics, Journal of the European Ceramic Society 33/10 (2013) 1859-1865. DOI: https://doi.org/10.1016/j.jeurceramsoc.2013.01.036
  • [205] J.M. Wu, X.Y. Zhang, J.L. Yang, Novel porous Si3N4 ceramics prepared by aqueous gel casting using Si3N4 poly-hollow microspheres as pore-forming agent, Journal of the European Ceramic Society 34/5 (2014) 1089-1096. DOI: https://doi.org/10.1016/j.jeurceramsoc.2013.11.025
  • [206] S. Akpinar, I.M. Kusoglu, O. Ertugrul, K. Onel, In situ mullite foam fabrication using microwave energy, Journal of the European Ceramic Society 32/4 (2012) 843-848. DOI: https://doi.org/10.1016/j.jeurceramsoc.2011.10.050
  • [207] S. Akpinar, I.M. Kusoglu, O. Ertugrul, K. Onel, Silicon carbide particle reinforced mullite composite foams, Ceramics International 38/8 (2012) 6163-6169. DOI: https://doi.org/10.1016/j.ceramint.2012.04.067
  • [208] C. Voigt, T. Zienert, P. Schubert, C.G. Aneziris, J. Hubálková, Reticulated porous foam ceramics with different surface chemistries, Journal of the American Ceramic Society 97/7 (2014) 2046-2053. DOI: https://doi.org/10.1111/jace.12977
  • [209] X.G. Deng, J.K. Wang, J.H. Liu, H.J. Zhang, F.L. Li, H.J. Duan, L.L. Lu, Z. Huang, W.G. Zhao, S.W. Zhang, Preparation and characterization of porous mullite ceramics via foam-gel casting, Ceramics International 41/7 (2015) 9009-9017. DOI: https://doi.org/10.1016/j.ceramint.2015.03.237
  • [210] H.S. Guo, W. Li, F.B. Ye, Preparation of microporous mullite ceramics by foaming for high temperature thermal isolation, Ceramics International 42/15 (2016) 17332-17338. DOI: https://doi.org/10.1016/j.ceramint.2016.08.029
  • [211] M.G. Zhu, R. Ji, Z.M. Li, H. Wang, L.L. Liu, Z.T. Zhang, Preparation of glass ceramic foams for thermal insulation applications from coal fly ash and waste glass, Construction and Building Materials 112 (2016) 398-405. DOI: https://doi.org/10.1016/j.conbuildmat.2016.02.183
  • [212] X.G. Deng, J.K. Wang, H.J. Zhang, J.H. Liu, W.G. Zhao, Z. Huang, S.W. Zhang, Effects of firing temperature on the microstructures and properties of porous mullite ceramics prepared by foam-gel casting, Advances in Applied Ceramics 115/4 (2016) 204-209. DOI: https://doi.org/10.1080/17436753.2015.1116820
  • [213] X. Deng, S. Ran, L. Han, H. Zhang, S. Ge, S. Zhang, Foam-gel casting preparation of high-strength selfreinforced porous mullite ceramics, Journal of the European Ceramic Society 37/13 (2017) 4059-4066. DOI: http://dx.doi.org/10.1016/j.jeurceramsoc.2017.05.009
  • [214] L. Han, F.L. Li, X.G. Deng, J.K. Wang, H.J. Zhang, S.W. Zhang, Foam-gel casting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures, Journal of the European Ceramic Society 37/7 (2017) 2717-2725. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.02.032
  • [215] K.K. Huang, Y.B. Li, S.J. Li, L. Wang, S.H. Wang, Effects of microsilica addition on the microstructure and properties of alumina foams, Ceramics International 42/14 (2016) 16401-16404. DOI: https://doi.org/10.1016/j.ceramint.2016.07.134
  • [216] X.G. Deng, J.K. Wang, J.H. Liu, H.J. Zhang, L. Han, S.W. Zhang, Low cost foam-gel casting preparation and characterization of porous magnesium aluminate spinel (MgAl2O4) ceramics, Ceramics International 42/16 (2016) 18215-18222. DOI: https://doi.org/10.1016/j.ceramint.2016.08.145
  • [217] J.L. Johnson, Metal injection molding (MIM) of thermal management materials in microelectronics, in: D.F. Heaney (Ed.), Handbook of Metal Injection Molding, Second Edition, Woodhead Publishing, 2019, 461-498. DOI: https://doi.org/10.1016/B978-008-102152-1.00024-6
  • [218] P.W. Ho, Q.F. Li, J.Y.H. Fuh, Evaluation of W-Cu metal matrix composites produced by powder injection molding and liquid infiltration, Materials Science and Engineering: A 485/1-2 (2008) 657-663. DOI: https://doi.org/10.1016/j.msea.2007.10.048
  • [219] W.S. Wang, K.S. Hwang, The effect of tungsten particle size on the processing and properties of infiltrated W-Cu compacts, Metallurgical and Materials Transactions A 29 (1998) 1509-1516. DOI: https://doi.org/10.1007/s11661-998-0366-9
  • [220] G.H. Gessinge, K.N. Melton, Burn-off behaviour of w-cu contact materials in an electric arc, Powder Metallurgy International 9/2 (1977) 67-72.
  • [221] E. Kny, Properties and uses of the pseudobinary alloys of Cu with refractory metals, Proceedings of the 12th International Plansee Seminar '89, Reutte, Innsbruck, Austria, 1989.
  • [222] J.L. Johnson, R.M. German, Phase equilibria effects on the enhanced liquid phase sintering of tungsten- copper, Metallurgical Transactions A 24 (1993) 23692377. DOI: https://doi.org/10.1007/BF02646516
  • [223] B. Yang, R.M. German, Powder injection molding and infiltration sintering of superfine grain W-Cu, International Journal of Powder Metallurgy 33/4 (1997) 55-63.
  • [224] L.A. Dobrzański, M. Kremzer, A. Nagel, Aluminium EN AC-AlSi12 alloy matrix composite materials reinforced by Al2O3 porous preforms, Archives of Materials Science and Engineering 28/10 (2007) 593-596.
  • [225] L.A. Dobrzański, M. Kremzer, A.Nagel, Application of pressure infiltration to the manufacturing of aluminium matrix composite materials with different reinforcement shape, Journal of Achievements in Materials and Manufacturing Engineering 24/2 (2007) 183-186.
  • [226] A. Mattern, B. Huchler, D. Stadenecker, R. Oberacker, A. Nagel, M.I. Hoffmann, Preparation of interpene trating ceramic-metal composites, Journal of European Ceramic Society 24/12 (2004) 3399-3408. DOI: https://doi.org/10.1016/j.jeurceramsoc.2003.10.030
  • [227] L.A. Dobrzański, M. Kremzer, M. Adamiak, The influence of reinforcement shape on wear behaviour of aluminium matrix composite materials, Journal of Achievements in Materials and Manufacturing Engineering 42/1 (2010) 26-32.
  • [228] L.A. Dobrzański, M. Kremzer, A. Nagel, B. Huchler, Fabrication of ceramic preforms based on Al2O3 CL 2500 powder, Journal of Achievements in Materials and Manufacturing Engineering 18/1-2 (2006) 71-74.
  • [229] L.A. Dobrzański, M. Kremzer, A.J. Nowak, A. Nagel, Aluminium matrix composites fabricated by infiltration method, Archives of Materials Science and Engineering 36/1 (2009) 5-11.
  • [230] M. Pawlyta, B. Tomiczek, L.A. Dobrzański, M. Kujawa, B. Bierska-Piech, Transmission electron microscopy observations on phase transformations during aluminium/mullite composites formation by gas pressure infiltration, Materials Characterization 114 (2016) 9-17. DOI: https://doi.org/10.1016/j.matchar.2016.02.003
  • [231] B. Tomiczek, M. Kujawa, G. Matula, M. Kremzer, T. Tański, L.A. Dobrzański, Aluminium AlSi12 alloy matrix composites reinforced by mullite porous preforms, Materialwissenschaft und Werkstofftechnik 46/4-5 (2015) 368-376. DOI: https://doi.org/10.1002/mawe.201500411
  • [232] L.A. Dobrzański, B. Tomiczek, W. Pakieła, A.E. Tomiczek, Mechanical properties and wear resistance of PM Composite materials reinforced with the halloysite particles,” Advanced Materials Research 1127 (2015) 107-112. DOI: https://doi.org/10.4028/www.scientific.net/AMR.112 7.107
  • [233] L.A. Dobrzański, B. Tomiczek, G. Matula, K. Gołombek, Role of halloysite nanoparticles and milling time on the synthesis of AA 6061 aluminium matrix composites, Advanced Materials Research 939 (2014) 84-89. DOI: https://doi.org/10.4028/www.scientific.net/AMR.939.84
  • [234] M. Kremzer, L.A. Dobrzański, M. Dziekońska, A. Radziszewska, Structure and properties of aluminiumsilicon matrix composites manufactured by pressure infiltration method, Archives of Materials Science and Engineering 68/2 (2014) 53-58.
  • [235] L.A. Dobrzański, B. Tomiczek, M. Pawlyta, P. Nuckowski, TEM and XRD study of nanostructured composite materials reinforced with the halloysite particles, Materials Science Forum 783-786 (2014) 1591-1596. DOI: https://doi.org/10.4028/www.scientific.net/MSF.783786.1591
  • [236] L.A. Dobrzański, G. Matula, Powder Injection Molding: Sinter-Hardening, in: R. Colás, G.E. Totten (Eds.), Encyclopedia of Iron, Steel, and Their Alloys, CRC Press, Boca Raton, 2016.
  • [237] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, P. Malara, T. Gaweł, L.B. Dobrzański, A. Achtelik-Franczak, Fabrication of scaffolds from Ti6Al4V powders using the computer aided laser method, Archives of Metallurgy and Materials 60/2 (2015) 1065-1070. DOI: https://doi.org/10.1515/amm-20150260
  • [238] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, T.G. Gaweł, A. Achtelik-Franczak, Selective laser sintering and melting of pristine titanium and titanium Ti6Al4V alloy powders and selection of chemical environment for etching of such materials, Archives of Metallurgy and Materials 60/3 (2015) 2039-2045. DOI: https://doi.org/10.1515/amm-2015-0346
  • [239] A. Achtelik-Franczak, Engineering composite materials reinforced with microporous titanium selectively sintered laser, Ph.D. Thesis Silesian University of Technology, Gliwice, Poland, 2016 (in Polish).
  • [240] L.B. Dobrzański, Structure and properties of engineering materials for prosthetic restorations of the stomatognathic system produced by incremental and decreasing methods, Ph.D. Thesis, AGH, Cracow, 2017 (in Polish).
  • [241] A. Miazga, K. Konopka, M. Gizowska, M. Szafran, Alumina matrix ceramic-nickel composites formed by gel casting method, Composites Theory and Practice 12/2 (2012) 138-141.
  • [242] H. Lianxi, Y. Yiwen, L. Shoujing, X. Xinying, Investigation on the kinetics of infiltration of liquid aluminium into an alumina fibrous preform, Journal of Materials Processing Technology 94/2-3 (1999) 227-230. DOI: https://doi.org/10.1016/S09240136(99)00099-0
  • [243] E.S. Eardley, H.M. Flower, Infiltration and solidification of commercial purity aluminium matrix composites, Materials Science and Engineering: A 359/1-2 (2003) 303-312. DOI: https://doi.org/10.1016/S0921-5093(03)00357-5
  • [244] Y.M. Ryu, E.P. Yoon, M.H. Rhee, The behavior of the nickel layer in an aluminum matrix composite reinforced with nickel coated carbon fiber, Journal of Materials Science Letters 19 (2000) 1103-1105. DOI: https://doi.org/10.1023/A:1006780212533
  • [245] K.B. Lee, H.S. Sim, H. Kwon, Reaction products of Al/TiC composites fabricated by the pressureless infiltration technique, Metallurgical and Materials Transactions A 37 (2006) 795. DOI: https://doi.org/10.1007/s11661-006-0052-8
  • [246] M. Madej, Copper infiltrated high speed steel skeletons, Archives of Materials Science and Engineering 98/1 (2019) 5-31. DOI: https://doi.org/10.5604/01.3001.0013.3391
  • [247] Z. Luo, Y. Song, S. Zhang, D.J. Miller, Interfacial microstructure in a B4C/Al composite fabricated by pressureless infiltration, Metallurgical and Materials Transactions A 43 (2012) 281-293. DOI: https://doi.org/10.1007/s11661-011-0817-6
  • [248] Z.P. Luo, Y.G. Song, S.Q. Zhang, A TEM study of the microstructure of SiCp/Al composite prepared by pressureless infiltration method, Scripta Materialia 45/10 (2001) 1183-1189. DOI: https://doi.org/10.1016/S1359-6462(01)01148-4
  • [249] N.A. Travitzky, Microstructure and mechanical properties of alumina copper composites fabricated by different infiltration techniques, Materials Letters 36/1-4 (1998) 114-117. DOI: https://doi.org/10.1016/S0167-577X(98)00012-3
  • [250] T. Etter, M. Papakyriacou, P. Schultz, P.J. Uggowitzer, Physical properties of graphite/aluminium composites produced by gas pressure infiltration method, Carbon 41/5 (2003) 1017-1024. DOI: https://doi.org/10.1016/S0008-6223(02)00448-7
  • [251] A. Alonso, A. Pamies, J. Narciso, C. GarciaCordovilla, E. Louis, Evaluation of the wettability of liquid aluminum with ceramic particulates (SiC, TiC, Al2O3) by means pressure infiltration, Metallurgical and Materials Transactions A 24 (1993) 1423-1432. DOI: https://doi.org/10.1007/BF02668210
  • [252] M. Freitas, S.A. Pianaro, F.N. Nadal, S.M. Tebcherani, E.A.T. Berg, Preparação e caracterização de materiais compósitos SiC/caulim/Al via "squeeze-casting, Cerâmica 55/355 (2009) 271-280. DOI: https://doi.org/10.1590/S0366-69132009000300006
  • [253] C. Garcia-Cordovilla, E. Louis, J. Narciso, Pressure infiltration of packed ceramic particulates by liquid metals, Acta Materialia 47/18 (1999) 4461-4479. DOI: https://doi.org/10.1016/S1359-6454(99)00318-3
  • [254] C.G. Kang, Y.H. Seo, The influence of fabrication parameters on the deformation behavior of the preform of metal-matrix composites during the squeeze-casting processes, Journal of Materials Processing Technology 61/3 (1996) 241-249. DOI: https://doi.org/10.1016/0924-0136(95)02180-9
  • [255] J. Hashim, L. Looney, M.S.J. Hashmi, The enhancement of wettability of particles in cast aluminium matrix composites, Journal of Materials Processing Technology 119/1-3 (2001) 329-335. DOI: https://doi.org/10.1016/S0924-0136(01)00919-0
  • [256] C.A. León, R.A.I. Drew, The influence of nickel coating on the wettability of aluminum on ceramics, Composites Part A: Applied Science and Manufacturing 33/10 (2002) 1429-1432. DOI: https://doi.org/10.1016/S1359-835X(02)00161-6
  • [257] T.P.D. Rajan, R.M. Pillai, B.C. Pai, Reinforcement coatings and interfaces in aluminium metal matrix composites, Journal of Materials Science 33 (1998) 3491-3503. DOI: https://doi.org/10.1023/A:1004674822751
  • [258] N. Sobczak, R. Asthana, W. Radziwiłł, R. Nowak, A. Kudyba, The role of aluminum oxidation in the wettingbonding relationship of Al/oxide couples, Archives of Metallurgy and Materials 52/1 (2007) 55-65.
  • [259] M.I. Pech-Canul, R.N. Katz, M.M. Makhlouf, S. Pickard, The role of silicon in wetting and pressureless infiltration of SiCp performs by aluminum alloys, Journal of Materials Science 35 (2000) 2167-2173. DOI: https://doi.org/10.1023/A:1004758305801
  • [260] A. Mortensen, Interfactial phenomena in the solidification processing of metal matrix composites, Materials Science and Engineering: A 135 (1991) 1-11. DOI: https://doi.org/10.1016/0921-5093(91)90527-T
  • [261] S.Y. Oh, J.A. Cornie, K.C. Russell, Wetting of ceramic particulates with liquid aluminum alloys: Part I. Experimental techniques, Metallurgical Transactions A 20 (1989) 527-532. DOI: https://doi.org/10.1007/BF02653932
  • [262] M. Książek, N. Sobczak, B. Mikułowski, W. Radziwiłł, I. Surowiak, Wetting and bonding strength in Al/Al2O3 system, Materials Science and Engineering: A 324/1-2 (2002) 162-167. DOI: https://doi.org/10.1016/S0921-5093(01)01305-3
  • [263] E. Pipel, J. Woltersdorf, D. Dietrich, S. Stockel, K. Weise, G. Marx, CVD-coated boron nitride on continuous silicon carbide fibres: structure and nanocomposition, Journal of the European Ceramic Society 20/11 (2000) 1837-1844. DOI: https://doi.org/10.1016/S0955-2219(00)00062-5
  • [264] A.R. Boccaccini, P. Karapappas, J.M. Marijuan, C. Kaya, TiO2 coatings on silicon carbide and carbon fibre substrates by electrophoretic deposition, Journal of Materials Science 39 (2004) 851-859. DOI: https://doi.org/10.1023/B:JMSC.0000012914.47793.3e
  • [265] L.A. Dobrzański, M. Kremzer, K. Gołombek, Structure and properties of aluminum matrix composites reinforced by Al2O3 particles, Materials Science Forum 591-593 (2008) 188-192. DOI: https://doi.org/10.4028/www.scientific.net/MSF.591593.188
  • [266] L.A. Dobrzański, M. Kremzer, J. Konieczny, The influence of Ni-P layer deposited onto Al2O3 on structure and properties of Al-Al2O3 composite materials, Journal of Achievements in Materials and Manufacturing Engineering 46/2 (2011) 147-153.
  • [267] M. Kremzer, Structure and properties of EN ACAlSi12 matrix composites manufactured by pressure infiltration, Ph.D. Thesis Silesian University of Technology, Gliwice, Poland, 2007 (in Polish).
  • [268] S.C. Kuiry, S. Wannaparhun, N.B. Dahotre, S. Seal, In-situ formation of Ni-alumina nanocomposite during laser processing, Scripta Materialia 50/9 (2004) 1237-1240. DOI: https://doi.org/10.1016/j.scriptamat.2004.02.005
  • [269] L.A. Dobrzański, G. Matula, A.D. Dobrzańska-Danikiewicz, P. Malara, M. Kremzer, B. Tomiczek, M. Kujawa, E. Hajduczek, A. Achtelik-Franczak, L.B. Dobrzański, J. Krzysteczko, Composite materials infiltrated by aluminium alloys based on porous skeletons from alumina, mullite and titanium produced by powder metallurgy techniques, in: L.A. Dobrzański (Ed.), Powder Metallurgy – Fundamentals and Case Studies, InTech, Rijeka, 2017, 95-137. DOI: https://doi.org/10.5772/65377
  • [270] L.M. Peng, J.W. Cao, K. Noda, K.S. Han, Mechanical properties of ceramic-metal composites by pressure infiltration of metal into porous ceramics, Materials Science and Engineering: A 374/1-2 (2004) 1-9. DOI: https://doi.org/10.1016/j.msea.2003.12.027
  • [271] L.A. Dobrzański, M. Kremzer, A. Nagel, Structure and properties of ceramic preforms based on Al2O3 particles, Journal of Achievements in Materials and Manufacturing Engineering 35/1 (2009) 7-13.
  • [272] L.A. Dobrzański, M. Kremzer, A.J. Nowak, A. Nagel, Composite materials based on porous ceramic preform infiltrated by aluminium alloy, Journal of Achievements in Materials and Manufacturing Engineering 20/1-2 (2007) 95-98.
  • [273] P. Yuan, D. Tan, F. Annabi-Bergaya, Properties and applications of halloysite nanotubes: recent research advances and future prospects, Applied Clay Science 112-113 (2015) 75-93. DOI: https://doi.org/10.1016/j.clay.2015.05.001
  • [274] A. Evans, C. San Marchi, A. Mortensen, Metal matrix composites in industry: an introduction and a survey, Springer Science+Business Media, New York, 2003.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b0fc850-0cf8-41e0-b9d0-d21d694fa3d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.