PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of production of silver nanoparticles using soil fungi and its applications for reducing irrigation water salinity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, the dried biomass of soil isolated fungus Eurotium cristatum was used for synthesizing silver nanoparticles (AgNPs). The synthesized AgNPs were spherical in shape with average diameter of 16.56 nm and displayed maximum absorbance at 418. Fourier transform infrared (FTIR) study indicated the presence and binding of proteins with myco-produced silver nanoparticles. The optimum conditions for AgNPs biosynthesis were found to be at temperature of 40°C, pH of 8.0, substrate concentration of 500 ppm and fungal biomass wt. of 0.8 g. The AgNPs showed antibacterial activity against Staphylococcus aureus, Listeria monocytogenes, Escherichia coli and Shigella flexneri. AgNPs was built-in thin film nanocomposite (TFNC) membrane and the impacts of nanomaterial composition on membrane properties and desalination process were studied. The AgNPs produced membrane TFNC had better filtration performances than pure thin film composite membrane TFC. The TFNC membrane had enhanced water flux (32.0 vs. 16.5 dm3∙m–2∙h–1) and advanced NaCl rejection (91.7 vs. 89%) compared to the TFC membrane. A pot experiment was conducted to evaluate the effect of the irrigation with desalinated water on yield and productivity of essential oil of the sweet basil (Ocimum basilicum L.) and lavender (Lavandula multifida L.). The irrigation with desalinated water reduced significantly the soil reaction, soil electrical conductivity (EC), sodium adsorption ratio and exchangeable sodium percent in rhizospheric soil, it also enhanced the growth and oil yield of both plants compared with those irrigated with salt water.
Wydawca
Rocznik
Tom
Strony
216--228
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab.
Twórcy
autor
  • Desert Research Center, Soil Fertility and Microbiology Department, Water Resources and Desert Soils Division, P.O. Box: 1, El-Matareya 11753, Cairo, Egypt
  • Desert Research Center, Department of Hydrogeochemistry, Water Resources and Desert Soils Division, Cairo, Egypt
autor
  • Desert Research Center, Department of Soil Physics and Chemistry, Water Resources and Desert Soils Division, Cairo, Egypt
Bibliografia
  • AHLUWALIA V., KUMAR J., SISODIA R., SHAKIL N.A., WALIA S. 2014. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Industrial Crops and Products. Vol. 55 p. 202–206. DOI 10.1016/j.indcrop. 2014.01.026.
  • AL-KARAGHOULI A., RENNE D., KAZMERSKI L.L. 2009. Solar and wind opportunities for waterdesalination in the Arab regions. Renewable and Sustainable Energy Reviews. Vol. 13. Iss. 9 p. 2397–2407. DOI 10.1016/j.rser.2008.05.007.
  • ASHRAF M., SHAHZAD S.M., AKHTAR N., IMTIAZ M., ALI A. 2016. Salinization/sodification of soil and physiological dynamics of sunflower irrigated with saline–sodic water amending by potassium and farm yard manure. Journal of Water Reuse and Desalination. Vol. 7. Iss. 4 p. 476–487. DOI 10.2166/wrd. 2016.053.
  • BELTRÁN J.M., KOO-OSHIMA S. 2006. Water desalination for agricultural applications. Land and Water Discussion Paper. No. 5. Proceedings of the FAO Expert Consultation on Water Desalination for Agricultural Applications. 26–27 April 2004, Rome. Rome. FAO pp. 48.
  • EL-AASSAR A.M., ELFADL M.M.A., ALI M.E., KOTP Y.H., SHAWKY H.A. 2017. Effect of manufacture conditions on reverse osmosis desalination performance of polyamide thin film composite membrane and their spiral wound element. Desalination and Water Treatment. Vol. 22. Iss. 26 p. 65–71. DOI 10.5004/dwt.2017.20293.
  • FOUDAA A., SAAD E.L., ELGAMALA M.S., MOHMEDB A.A., SALEMA S.S. 2017. Optimal factors for biosynthesis of silver nanoparticles by Aspergillus sp. Al Azhar Bulletin of Science. Vol. 9 p. 161–172.
  • GAUR A., ADHOLEYA A. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science. Vol. 86. Iss. 4 p. 528–534.
  • GHASSEMI F., JAKEMAN A.J., NIX H.A.1996. Salinisation of land and water resources: Human causes, extent, management and case studies. Australian Geographical Studies. Vol. 34. Iss. 1 p. 159–161.
  • GRATTAN S.R., DÍAZ F.J., PEDRERO F., VIVALDI G.A. 2015. As-sessing the suitability of saline wastewaters for irrigation of Citrus spp.: Emphasis on boron and specificion interactions. Agricultural Water Management. Vol. 157 p. 48–58. DOI 10.1016/j.agwat.2015.01.002.
  • GUILGER-CASAGRANDE M., GERMANO-COSTA T., PASQUOTO-STILIANI T., FRACETO L.F., DE LIMA R. 2019. Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Scientific Reports. Vol. 9. Iss. 1 p. 1–9. DOI 10.1038/ s41598-019-50871-0.
  • HAMEDI S., GHASEMINEZHAD S., SHOJAOSADATI S., SHOKROLLAH-ZADEH S. 2012. Comparative study on silver nanoparticles properties produced by green methods. Iranian Journal of Biotechnology. Vol. 10. Iss. 3 p. 191–197.
  • HARLEYS. M. 1993. Use of a simple, colorimetric assay to demonstrate conditions for induction of nitrate reductase in plants. American Biology Teacher. Vol. 55. Iss. 3 p. 162–164. DOI 10.2307/4449615.
  • KLEIN D.A., LOH T.C., GOULDING R.L. 1971. A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter. Soil Biology and Biochemistry. Vol. 3. Iss. 4 p. 385–387. DOI 10.1016/0038-0717(71)90049-6.
  • KOTP Y.H. 2017. Controlled synthesis and sorption properties of magnesium silicate nanoflower prepared by a surfactant-mediated method. Separation Science and Technology. Vol. 52. Iss. 4 p. 657–670. DOI 10.1080/01496395.2016.1264425.
  • KOTP Y.H., SHEBL Y.A., EL-DEAB M.S., EL-ANADOULI B.E., SHAWKY H.A. 2017. Performance enhancement of PA-TFC RO membrane by using magnesium silicate nanoparticles. Journal of Inorganic and Organometallic Polymers and Materials. Vol. 27. Iss. 1 p. 201–214. DOI 10.1007/s10904-017-0667-9.
  • LEÓN-ROMERO M.A., SOTO-RÍOS P.C., FUJIBAYASHI M., NISHI-MURA O. 2017. Impact of NaCl solution pretreatment on plant growth and the uptake of multi-heavy metal by the model plant Arabidopsis thaliana. Water, Air, and Soil Pollution. Vol. 228. Iss. 2 p. 64. DOI 10.1007/s11270-017-3241-8.
  • MUDGAL V., MADAAN N., MUDGALA. 2010. Heavy metals in plants: phytoremediation: plants used to remediate heavy metal pollution. Agriculture and Biology Journal of North America. Recent Patents on Nanotechnology. Vol. 1. Iss. 1 p. 40–46.
  • NICOLÁS E. 2019. Ripening indices, olive yield and oil quality in response to irrigation with saline reclaimed water and deficit strategies. Frontiers in Plant Science. Vol. 10, 1243. DOI 10.3389/fpls.2019.01243.
  • OTTONI C.A., SIMÕES M.F., FERNANDES S., DOS SANTOS J.G., DA SILVA E.S., DE SOUZA R.F.B., MAIORANO A.E. 2017. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express. Vol. 7. Iss. 1, 31. DOI 10.1186/s13568-017-0332-2.
  • PITT J., HOCKING A. 2009. Fungi and food spoilage. Dordrecht Heidelberg London New York. Springer. ISBN 978-0-387-92206-5 pp. 520.
  • REHAN Z.A., GZARA L., KHAN S.B., ALAMRY K.A., EL-SHAHAWI M.S., ALBEIRUTTY M.H., FIGOLI A., DRIOLI E., ASIRI A.M. 2016. Synthesis and characterization of silver nanoparticles-filled polyethersulfone membranes for antibacterial and antibiofouling application. Recent Patents on Nanotechnology. Vol. 10. Iss. 3 p. 231–251. DOI 10.2174/1872210510666160 429145228.
  • SANGAPPA M., THIAGARAJAN P. 2012. Mycobiosynthesis and characterization of silver nanoparticles from Aspergillus niger: A soil fungal isolate. International Journal of Life Sciences Biotechnology and Pharma Research. Vol. 1. Iss. 2 p. 282–289.
  • SOLIMAN E.R., KOTP Y.H., SOUAYA E.R., GUINDY K.A., IBRAHIM R.G. 2019. Development the sorption behavior of nanocomposite Mg/Al LDH by chelating with different monomers. Composites. Part B: Engineering. Vol. 175, 107131. DOI 10.1016/j.compositesb.2019.107131.
  • SRIDHAR S., AMINABHAVI T.M., MAYOR S.J., RAMAKRISHNA M. 2007. Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite pebax membranes. Industrial and Engineering Chemistry Research. Vol. 46. Iss. 24 p. 8144–8151. DOI 10.1021/ie070114k.
  • USDA 2014. Kellogg Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report. No. 42 Ver. 5.0. United States Department of Agriculture pp. 1001.
  • VRIJENHOEK E.M., HONG S., ELIMELECH M. 2001. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. Journal of Membrane Science. Vol. 188. Iss. 1 p. 115–128. DOI 10.1016/S0376-7388(01)00376-3.
  • WEI W., BILSBORROW P.E., HOOLEY P., FINCHAM D.A., LOMBI E., FORSTER B.P. 2003. Salinity induced differences in growth, ion distribution and partitioning in barley between the cultivar Maythorpe and its derived mutant Golden Promise. Plant and Soil. Vol. 250. Iss. 2 p. 183–191. DOI 10.1023/A: 1022832107999.
  • WHO 2006. Guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Geneva, Switzerland. World Health Organization. ISBN 9789241594448 pp. 105.
  • YASEEN R., YOSSIF T. 2019. Functional microbial diversity in relation to soil characteristics and land uses of Wadi Um Ashtan Basin, North-western Coast, Egypt. Egyptian Journal of Soil Science. Vol. 59. Iss. 3 p. 287–297. DOI 10.21608/EJSS. 2019.14096.1282.
  • YIN J., YANG Y., HU Z., DENG B.2013. Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling. Journal of Membrane Science. Vol. 441 p. 73–82. DOI 10.1016/j.memsci.2013.03.060.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b0d1caf-d79d-4ed8-88c4-43cc4812305c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.