PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Error mitigation algorithm based on bidirectional fitting method for collision avoidance of Unmanned Surface Vehicle

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radars and sensors are essential devices for an Unmanned Surface Vehicle (USV) to detect obstacles. Their precision has improved significantly in recent years with relatively accurate capability to locate obstacles. However, small detection errors in the estimation and prediction of trajectories of obstacles may cause serious problems in accuracy, thereby damaging the judgment of USV and affecting the effectiveness of collision avoidance. In this study, the effect of radar errors on the prediction accuracy of obstacle position is studied on the basis of the autoregressive prediction model. The cause of radar error is also analyzed. Subsequently, a bidirectional adaptive filtering algorithm based on polynomial fitting and particle swarm optimization is proposed to eliminate the observed errors in vertical and abscissa coordinates. Then, simulations of obstacle tracking and prediction are carried out, and the results show the validity of the algorithm. Finally, the method is used to simulate the collision avoidance of USV, and the results show the validity and reliability of the algorithm.
Rocznik
Tom
Strony
13--20
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
autor
  • School of Transportation, Wuhan University of Technology, Wuhan, China
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology) Ministry of Education, Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology) Ministry of Education, Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology) Ministry of Education, Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology) Ministry of Education, Wuhan, China
autor
  • Key Laboratory of High Performance Ship Technology (Wuhan University of Technology) Ministry of Education, Wuhan, China
Bibliografia
  • 1. Li W. F., Ma W. Y., Simulation on Vessel Intelligent Collision Avoidance Based on Artificial Fish Swarm Algorithm. Polish Maritime Research, 2016, 23:138–143.
  • 2. Campbell S., Naeem W., Irwin G.W., A review on improving the autonomy of unmanned surface vehicles through inteligent collision avoidance maneuver. Annual Reviews in Control, 2012, 36(2):267–283.
  • 3. Larson J., Bruch M., Halterman R., Rogers J., Webster R., Advances in Autonomous Obstacle Avoidance for Unmanned Surface Vehicles. Space and Naval Warfare Systems Center, San Diego, CA, 2007.
  • 4. U.S. department Homeland Security/U.S. Coast Guard, “Navigation Rules,” Paradise Cay Publications, 2010.
  • 5. Kim, H., Park, B., Myung, H., Curvature path planning with high resolution graph for unmanned surface vehicle. Robot Intelligence Technology and Applications, 2013, 208:147–154.
  • 6. Riccardo P., Sanjay S., Jian W., Andrew M., Robert S., Obstacle Avoidance Approaches for Autonomous Navigation of Unmanned Surface Vehicles. Journal of Navigation, 2017, 71(1): 1–16.
  • 7. Kuwata Y., Wolf M. T., Zarzhitsky D., Huntsberger T. L.,Safe maritime autonomous navigation with COLREGS, usingvelocity obstacles, IEEE Journal of Oceanic Engineering,2014, 39(1):110–119.
  • 8. Zhao Y. X., Wang L., Peng Sh., A real-time collision avoidancelearning system for Unmanned Surface Vessels. Neurocomputing,2016, 182:255–266.
  • 9. Park J. H., Kim J. W., Son N. S., Passive target tracking of marinetraffic ships using onboard monocular camera for unmannedsurface vessel. Ectronics letters, 2015, 51(31):987–989.
  • 10. Wang H., Mou, X. Zh., Mou W., Vision based Long Range Object Detection and Tracking for Unmanned Surface Vehicle.Proceedings of the 2015 7th IEEE International Conferenceon Cybernetics and Intelligent Systems and Robotics, Automation and Mechatronics, Cambodia, 2015:101–105.
  • 11. Lazarowska A., Swarm Intelligence Approach to Safe Ship Control. Polish Maritime Research, 2015, 22(4): 34–40.
  • 12. Zhong K., Lei X., Li SQ., Wiener filter preprocessing for OFDM systems in the presence of both non stationary andstationary phase noises. EURASIP Journal on Advances in Signal Processing, 2013(7):1–9.
  • 13. Widrow B., Hoff M., Adaptive switch circuits. IRE Wescom,Convertion Record, Part 4, 1966:96–104.
  • 14. Wang X., Liu J. H., Zhou Q. F., Real-Time Multi-Target Localization from Unmanned Aerial Vehicles. Sensors, 2016,17(1):33–43.
  • 15. Dichev D., Koev H., Bakalova T., An Algorithm for Improving the Accuracy of Systems Measuring Parameters if Moving Objects, Metrology and Measurement Systems, 2016, 23(4):555–565.
  • 16. Borodachev S. M., Recursive Least Squares Method of Regression Coefficients Estimation as a Special Case of Kalman Filter. International Conference on Numerical Analysis and Applied Mathematics, Rhodes, 2015:23–29.
  • 17. Singer R. A., Estimating Optimal Tracking Filter Performancefor Manned Maneuvering Targets, IEEE Transaction on Aerospace and Electronic Systems, l970, 6(4):473–483.
  • 18. Zhou Zh., Liu J. M., Tan X. J., MCS Model Based on Jerk Input Estimation and Nonlinear Tracking Algorithm. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1397–1402.
  • 19. Zhu W., Wang W., Yuan G., An Improved Interacting Multiple Model Filtering Algorithm Based on the Cubature Kalman Filter for Maneuvering Target Tracking. Sensors, 2016, 16(6): 805–815.
  • 20. Afshari H. H., Al-Ani D., Habibi S., A New Adaptive Control Scheme Based on the Interacting Multiple Model (IMM) Estimation. Journal of Mechanical Science & Technology, 2016, 30 (6):2759–2767.
  • 21. Jin B., Jiu B., Su T., Switched Kalman Filter-Interacting Multiple Model Algorithm Based on Optimal Autoregressive Model for Manoeuvring Target Tracking. IET Radar Sonar and Navigation, 2015, 9(2): 199–209.
  • 22. Yousef, M. T., Ali, H. E. I., Habashy, S. M., Adaptive Controller based PSO with Virtual Sensor for Obstacle Avoidance in Dynamic Environments, Radio Science Conference, 2014, 228–235.
  • 23. Liu Y. Ch., Bucknall R., Path Planning Algorithm for Unmanned Surface Vehicle Formations in a Practical Maritime Environment, Ocean Engineering, 2015, 97:126–144.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b0a1b90-26df-4757-8f76-2a83b0010224
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.