PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A first arrival detection method for low SNR microseismic signal

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of the microseismic signals have low signal-to-noise ratio (SNR) due to the strong background noise, which makes it difficult to locate the first arrival time. Both accuracy and stability of conventional methods are poor in this situation. To overcome this problem, here we proposed a new method based on the adaptive Morlet wavelet and principal component analysis process in wavelet coefficients matrix. The three components of microseismic signal make it possible to extract the features in wavelet coefficients domain. Then the reconstructed signal from weighted features presents an obvious first arrival. Tests on synthetic signals and real data provide a solid evidence for its feasibility in low SNR microseismic signal.
Czasopismo
Rocznik
Strony
945--957
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Key Laboratory of Geo-detection (China University of Geosciences, Beijing) University of Geosciences Beijing China
  • School of Geophysics and Information Technology China University of Geosciences Beijing China
autor
  • School of Geophysics and Information Technology China University of Geosciences Beijing China
Bibliografia
  • 1. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdiscip Rev Comput Stat 2(4):433–459
  • 2. Allen R (1978) Automatic earthquake recognition and timing from single traces. Bull Seismol Soc Am 68:1521–1532
  • 3. Allen R (1982) Automatic phase pickers: their present use and future prospects. Bull Seismol Soc Am 72(6):S225–S242
  • 4. Ambuter BP, Solomon SC (1974) An event-recording system for monitoring small earthquakes. Bull Seismol Soc Am 64:1181–1188
  • 5. Anant KS, Dowla FU (1997) Wavelet transform methods for phase identification in three-component seismograms. Bull Seismol Soc Am 87(6):1598–1612
  • 6. Bernardino A, Santosvictor J (2005) A real-time Gabor primal sketch for visual attention. In: Iberian conference on pattern recognition and image analysis. Springer, pp 335–342
  • 7. Coppens F (1985) First arrival picking on common-offset trace collections for automatic estimation of static corrections. Geophys Prospect 33:1212–1231
  • 8. Gelchinsky B, Shtivelman V (1983) Automatic picking of first arrivals and parameterization of travel time curves. Geophys Prospect 31:915–928
  • 9. Gunning J, Glinsky ME (2006) Wavelet extractor: a Bayesian well-tie and wavelet extraction program. Comput Geosci 32(5):681–695
  • 10. Jian C, Dai Y, Zhang Y (2013) Evaluation approaches for wavelet pickup based on high-order statistics. Oil Geophys Prospect 48(3):497–503
  • 11. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng Trans 82:35–45
  • 12. Li Z-C, Zhao Y et al (2015) Time-varying wavelet extracting method based on S domain spectral modeling technology. Prog Geophys 30(6):2706–2713
  • 13. McCormack MD et al (1993) First-break refraction event picking and seismic data trace editing using neural networks. Geophysics 58(1):67–78
  • 14. Molyneux JB, Schmitt DR (1996) First-break timing: arrival onset times by direct correlation. Geophysics 64(5):1492–1501
  • 15. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2(11):559–572
  • 16. Sheng G, Li Z, Wang W et al (2015) A new automatic detection method of microseismic events based on wavelet decomposition and high-order statistics. Geophys Prospect Pet 54(4):388–395
  • 17. Sleeman R, Van Eck T (1999) Robust automatic P-phase picking: an on-line implementation in the analysis of broadband seismogram recordings. Phys Earth Planet Inter 113(1–4):265–275
  • 18. Tan YY, Yu J, Feng G et al (2016) Arrival picking of microseismic events using the SLPEA algorithm. Chin J Geophys 59(1):185–196 (in Chinese)
  • 19. Turhan M (1983) Joint time/frequency analysis, Q quality factor and dispersion computation using Gabor-Morlet wavelets or Gabor-Morlet transform. Rock Solid Images 4(1):1–5
  • 20. Wang H, Li M, Shang X (2016a) Current developments on micro-seismic data processing. J Nat Gas Sci Eng 32:521–537
  • 21. Wang R, Dai Y et al (2016b) Time-varying wavelet extraction based on time-frequency analysis and adaptive segmentation. OGP 51(5):850–862
  • 22. Wong J, Han L, Bancroft JC, Stewart RR (2009) Automatic time-picking of first arrivals on noisy microseismic data. CREWS research report, University of Calgary
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b093f0e-cfce-4e8e-b01c-2e3b82bb1f2a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.