Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, we discuss equilibrium problems and their resolvents on complete geodesic spaces. In particular, we consider asymptotic behavior and continuity of resolvents with positive parameter in a complete geodesic space whose curvature is bounded above. Furthermore, we apply these results to resolvents of convex functions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. 20220187
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Department of Information Science, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan
autor
- Department of Information Science, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan
Bibliografia
- [1] W. Takahashi, Nonlinear Functional Analysis Fixed Point Theory and Its Applications, Yokohama Publishers, Yokohama, 2000.
- [2] S. Kamimura and W. Takahashi, Approximating solutions of maximal monotone operators in Hilbert spaces, J. Approx. Theory 106 (2000), 226–240.
- [3] S. Kamimura and W. Takahashi, Weak and strong convergence of solutions to accretive operator inclusions and applications, Set-Valued Anal. 8 (2000), 361–374.
- [4] S. Kamimura and W. Takahashi, Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. Optim. 13 (2002), 938–945.
- [5] K. Kido, Strong convergence of resolvents of monotone operators in Banach spaces, Proc. Amer. Math. Soc. 103 (1988), 755–758.
- [6] R. G. Otero and B. F. Svaiter, A strongly convergent hybrid proximal method in Banach spaces, J. Math. Anal. Appl. 289 (2004), 700–711.
- [7] S. Reich, Constructive techniques for accretive and monotone operators, Applied Nonlinear Analysis (Proc. Third Internat. Conf. Univ. Texas, Arlington, Tex., 1978), Academic Press, New York, 1979, pp. 335–345.
- [8] S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287–292.
- [9] Y. Kimura and Y. Kishi, Equilibrium problems and their resolvents in Hadamard spaces, J. Nonlinear Convex Anal. 19 (2018), no. 9, 1503–1513.
- [10] Y. Kimura, Resolvents of equilibrium problems on a complete geodesic space with curvature bounded above, Carpathian J. Math. 37 (2021), no. 3, 463–476.
- [11] S. Dhompongsa and B. Panyanak, On Delta-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), no. 10, 2572–2579.
- [12] M. Asadi, S. Ghasemzadehdibagi, S. Haghayeghi, and N. Ahmad, Fixed point theorems for ( )a p, -nonexpansive mappings in CAT(0) spaces, Nonlinear Funct. Anal. Appl. 26 (2021), no. 5, 1045–1057.
- [13] M. Asadi, S. M. Vaezpour, and M. Soleymani, Some results for CAT(0) spaces, Theory Approx. Appl. 7 (2011), 11–19.
- [14] J. R. He, D. H. Fang, G. López, and C. Li, Mannas algorithm for nonexpansive mappings in CAT(kappa) spaces, Nonlinear Anal. 57 (2012), no. 2, 445–452.
- [15] S. Saejung, Halpern’s iteration in CAT(0) spaces, Fixed Point Theory and Appl. 2010 (2010), 13.
- [16] M. Bačák, Convex Analysis and Optimization in Hadamard Spaces, De Gruyter, Berlin, 2014.
- [17] Y. Kimura and K. Shindo, Asymptotic behavior of resolvents on complete geodesic spaces with general perturbation functions, Soft Computing and Optimization: SCOTA 2021, Ranchi, India (Springer Proceedings in Mathematics & Statistics), Springer Verlag, Singapore, 2022.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b079a8f-2891-4e78-9849-c7ab50532cb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.