PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic analysis of a rod vibro-impact system with intermediate supports

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The two-mass resonant vibro-impact module is presented as the rod system with cylindrical intermediate supports. The corresponding design diagram is constructed. Based on the finite element method, the frequency of free oscillations is defined for the corresponding location of the intermediate supports. A stress-strain state of the elastic element is considered. The stiffness of the intermediate supports is defined by solving the contact problem between the cylindrical rod supports and the flat spring. The dynamics of the vibro-impact rod system with multiple natural frequencies is analyzed taking into account the contact stiffness of the intermediate supports. The determination of contact and equivalent stresses occurring during the operation of the vibro-impact rod system is performed.
Rocznik
Strony
127--134
Opis fizyczny
Bibliogr. 20 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanics and Automation Engineering, Institute of Engineering Mechanics and Transport, Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv, Ukraine
autor
  • Department of Mechanics and Automation Engineering, Institute of Engineering Mechanics and Transport, Lviv Polytechnic National University, 12 Bandera Street, 79013 Lviv, Ukraine
Bibliografia
  • 1. Babitsky V. (2013), Theory of vibro-impact systems and applications, Springer Science & Business Media.
  • 2. Bednarski Ł., Michalczyk J. (2017), Modelling of the working process of vibratory conveyors applied in the metallurgical industry, Archives of Metallurgy and Materials, 62(2), 721–728.
  • 3. Belovodskiy V.N., Bukin S.L., Sukhorukov M.Y., Babakina A.A. (2015), 2:1 superharmonic resonance in two-masses vibrating machine, Journal of Vibration Engineering & Technologies, 3(2), 123–135.
  • 4. Clough Ray W., Joseph Penzien. (1995), Dynamics of Structures, Berkeley: Computers & Structures.
  • 5. David V. Hutton. (2004), Fundamentals of finite element analysis, Editorial McGraw − Hill, USA.
  • 6. Despotović Ž.V., Lečić M., Jović M. R., Durić A. (2014), Vibration control of resonant vibratory feeders with electromagnetic excitation, FME Transactions, 42(4), 281–289.
  • 7. Dyachenko P., Chychuzhko M., Al-Ammouri A. (2017). Development and application of computer model to study the modes of dynamic loading in mechanical oscillatory systems. EasternEuropean Journal of Enterprise Technologies, 1(85), 42–49.
  • 8. Filimonikhin G., Yatsun V. (2017). Conditions of replacing a singlefrequency vibro-exciter with a dual-frequency one in the form of passive auto-balancer. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, 1, 61–68.
  • 9. Gursky V., Kuzio I. (2016), Strength and durability analysis of a flat spring at vibro-impact loadings, Eastern-European Journal of Enterprise Technologies, 5, 7(83), 4–10.
  • 10. Kogaev V.P. (1977), Raschetu na prochnost pry napriazhenyiakh, peremennukh vo vremeny [Calculation of strength under stresses variable in time], Mashinostroenie, Moscow, (in Russian).
  • 11. Luo G., Ma L., Lv X. (2009), Dynamic analysis and suppressing chaotic impacts of a two-degree-of-freedom oscillator with a clearance, Nonlinear Analysis: Real World Applications, 10(2), 756–778.
  • 12. Luo G., Zhang Y., Xie J., Zhang J. (2007), Vibro-impact dynamics near a strong resonance point, Acta Mechanica Sinica, 23(3), 329–341.
  • 13. Nadutyi V.P., Sukharyov V.V., Belyushyn D.V. (2013), Determination of stress condition of vibrating feeder for ore drawing from the block under impact loads, Metallurgical & Mining Industry, 5(1), 24–26.
  • 14. Pavel V. Krot. (2010), Dynamics and diagnostics of the rolling mills drivelines with non-smooth stiffness characteristics, Proceedings of the 3rd International Conference on Nonlinear Dynamics, Kharkov, Ukraine, 115–120.
  • 15. Pisarenko G.S., Yakovlev A.P., Matveev V.V. (1988), Spravochnyk po soprotyvlenyyu materyalov [Handbook on strength of materials, Naukova Dumka, Kiev, (in Russian).
  • 16. Shigley Joseph Edward. (2011), Shigley's mechanical engineering design, Tata McGraw-Hill Education.
  • 17. Simon P., Reuss P, Gaul L. (2014), Identification of sub- and higher harmonic vibrations in vibro-impact systems, Nonlinear Dynamics, 2, 131–140.
  • 18. Sokolov I.J., Babitsky V.I., Halliwell N.A. (2007), Autoresonant vibro-impact system with electromagnetic excitation, Journal of Sound and Vibration, 308, 375–391.
  • 19. Vladislav Yevstignejev (2008), Application of the complete bifurcation groups method for analysis of strongly nonlinear oscillators and vbro-impact systems, Riga, Summary.
  • 20. Yoon J. Y., Kim B. (2015), Vibro-impact energy analysis of a geared system with piecewise-type nonlinearities using various parameter values, Energies, 8(8), 8924–8944.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b067e59-eea8-4977-9a74-47fae5f00a59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.