PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inclination angle implications for fluid flow and mixed convection in complex geometry enclosure-meshless numerical analyses

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The meshless local Petrov-Galerkin (MLPG) method is extended to analyze the mixed convection and fluid flow in an inclined two-dimensional lid-driven cavity. The enclosure considered comprises two insulated vertical walls and a wavy bottom wall which is subjected to a higher constant temperature than its top counterpart, the sliding lid. For the proposed scheme, the stream function formulation with a weighting function of unity is employed. The simulation results reveal that the local Nusselt number increases with a clockwise increase in the inclination angle. Also, a decrease in the aspect ratio results in an increase in the hot wavy wall average Nusselt number.
Rocznik
Strony
519--530
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
  • Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
autor
  • Department of Mechanical Engineering, K.N. Toosi University of Technology, Tehran, Iran
  • Department of Mechanical Engineering, University of Kashan, Kashan, Iran
Bibliografia
  • 1. Al-Amiri A., Khanafer K., Bull J., Pop I., 2007, Effect of the sinusoidal wavy bottom surface on mixed convection heat transfer in a lid-driven cavity, International Journal Heat and Mass Transfer, 50, 1771-1780
  • 2. Arefmanesh A., Najafi M., Abdi H., 2005, A meshless local Petrov-Galerkin method for fluid dynamics and heat transfer applications, Journal of Fluids Engineering, 127, 647-455
  • 3. Arefmanesh A., Najafi M., Abdi H., 2008, Meshless local Petrov-Galerkin method with unity test function for non-isothermal fluid flow, Computer Modeling in Engineering and Sciences, 25, 9-23
  • 4. Atluri S.N., Zhu T., 1998, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22, 117-127
  • 5. Atluri S.N., Zhu T., 1998, A new meshless local Petrov-Galerkin (MLPG) approach to nonlinear problems in computer modeling and simulation, Computer Modeling in Engineering and Sciences, 3, 187-196
  • 6. Bejan A., 2004, Convection Heat Transfer, John Wiley & Sons, New York
  • 7. Chamkha A.J., 2002, Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption, Numerical Heat Transfer, Part A, 41, 529-546
  • 8. Guo G., Sharif M.A.R., 2004, Mixed convection in rectangular cavities at various aspect ratios with moving isothermal sidewalls and constant flux heat source on the bottom wall, International Journal of Thermal Science, 43, 465-475
  • 9. Haji Mohammadi M., 2008, Stabilized meshless Petrov-Galerkin method (MLPG) for incompressible viscous fluid flows, Computer Modeling in Engineering and Sciences, 29, 75-94
  • 10. Khanafer K., Al-Amiri A.M., Pop I., 2007, Numerical simulation of unsteady mixed convection in a driven cavity using an externally excited sliding lid, European Journal of Mechanics – B/Fluids, 26, 669-687
  • 11. Lin H., Atluri S.N., 2000, Meshless local Petrov-Galerkin (MLPG) method for convectiondiffusion problems, Computer Modeling in Engineering and Sciences, 1, 45-60
  • 12. Lin H., Atluri S.N., 2001, The meshless Local Petrov-Galerkin (MLPG) method for solving incompressible Navier-Stokes equations, Computer Modeling in Engineering and Sciences, 1, 117-142
  • 13. Moallemi M.K, Jang K.S., 1992, Prandtl number effects on laminar mixed convection heat transfer in a lid-driven cavity, International Journal Heat and Mass Transfer, 35, 1881-1892
  • 14. Nasrin R., 2012, Influences of physical parameters on mixed convection in a horizontal lid-driven cavity with an undulating base surface, Numerical Heat Transfer, Part A, 61, 306-321
  • 15. Onate E., Idelsohn S., Zienkiewicz O.Z., Taylor R.L., 1996, A finite point method in computational mechanics: applications to convective transport and fluid flow, International Journal for Numerical Methods in Engineering, 39, 3839-3867
  • 16. Oztop H.F., Dagtekin I., 2004, Mixed convection in two-sided lid-driven differentially heated square cavity, International Journal Heat and Mass Transfer, 47, 1761-1769
  • 17. Sharif M.A.R., 2007, Laminar mixed convection in shallow inclined driven cavities with hot moving lid on top and cooled from bottom, Applied Thermal Engineering, 27, 1036-1042
  • 18. Zhu T., Zhang J.D., Atluri S.N., 1998, Local boundary integral equation (LBIE) for solving nonlinear problems, Computational Mechanics, 22, 174-186
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5b064ee8-5ab9-4958-962a-df381e5d27a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.