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Abstract—This work present a novel approach to track a 
specific speaker among multiple using the Minimum Variance 
Distortionless Response (MVDR) beamforming and fuzzy logic 
ruled based classification for speaker recognition. The Sound 
sources localization is performed with an improve delay and sum 
beamforming (DSB) computation methodology. Our proposed 
hybrid algorithm computes first the Generalized Cross 
Correlation (GCC) to create a reduced search spectrum for the 
DSB algorithm. This methodology reduces by more than 70 % 
the DSB localization computation burden. Moreover for high 
frequencies Sound sources beamforming, the DSB will be 
preferred to the MVDR for logic and power consumption 
reduction. 

Index Terms—DSB, GCC,Localization, Tracking, MVDR, 
Fuzzy Logic, Classification,  speaker recognition, FPGA. 

I. INTRODUCTION 

APID advancement in adaptive beamforming applications 
such as (sonar and radar) algorithms has greatly increased 

the computation and communication demands on 
beamforming arrays, particularly for applications that require 
autonomous and real-time computations. Parallel processing 
for adaptive beamformers can significantly reduce execution 
time, power consumption, cost and increase scalability and 
dependability [1]. Parallelism is well defined by Amdahl [2] 
and multiple papers defined power consumption control [3], 
[4], [5]. In this work the sound sources are captured with 
miniature electro-mechanical system microphones (MEMS 
microphones) which are configured as a linear acoustic array. 
After demodulation the microphones signals are transferred to 
the voice activity detector (VAD). An important problem in 
speech processing applications is the determination of active 
speech periods within a given audio signal. Speech can be 
characterized by a discontinuous signal since information is 
carried only when someone is talking [6]. Moreover speech 
activities normally occupy 60% of the time of a regular 
conversation. The VAD enables reallocating resources during 
the periods of speech absence [7] or disable the resources for 
power saving. Whenever the VAD detects the presence of 
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speech in the audio signal it then triggers the localization of 
the sound sources. 

However sequential implementation of beamforming 
algorithms with multiple microphones presents a significant 
computational challenge in real-time processing. Our 
contribution expands on the approach presented in [8] to 
multiple Sound sources: 

Prior to the delay and sum beamforming (DSB) 
computation, all the Field Of View (FOV) is scanned using the 
Generalized Cross Correlation (GCC) methodology based on 
energy to find the direction of arrival (DOA) of the sound 
sources. Using the angles of arrivals ф1, ф2 of the sound 
sources provided by the GCC, the DSB search area is then 
restrained to those directions therefore its throughput 
improved. 

Figure 1 shows a FOV with two sound sources located at 
(68 and 108) degrees of the microphone array center. The two 
bright cones represent the new DSB search spectrum after 
GCC computation. The DSB is then computed to locate the 
exact Sound sources position at (0.6 and 1) meters 
respectively. Our hybrid approach reduces the DSB 
throughput by reducing the FOV search spectrum. A FOV is 
the region in space where sound sources are susceptible to be 
found and the resolution is the smallest distinguishable region. 

 
Figure 1. Two sound sourcesDOA, obtained with the GCC algorithm 

based on Energy. 

Although DSB provides an accurate localization of sound 
sources it does not achieve a maximization of the Signal-to-
Noise Ratio (SNR) especially in low frequency [9]. Therefore 
the Minimum Variance Distortion less Response (MVDR) is 
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used for low frequencies signals and DSB otherwise. This 
approach reduces logic resources while improving directivity. 
The directivity result is then used to identify the tracked 
speaker with a fuzzy rule based classification method. 

To create a speaker voice model this work uses several 
types of spectral features [10], e.g. Mel-frequency Cepstral 
Coefficients (MFCC), that is extracted from temporal signal 
frames corresponding to specific person speech. The modeling 
of feature distribution in the feature space is somewhat similar 
to the one applied in Gaussian Mixture Models (GMM) that 
are frequently used in speaker identification systems. 
However, the application of the rule based approach instead of 
Maximum Likelihood (ML) for the classification procedure 
proves to be more robust [11]. The computationally expensive 
voice modeling process is performed during system off-line 
tuning. The classification procedure itself is very fast [12] and 
is able to be performed in real-time on embedded hardware. 

The remaining paper is organized as follows: Section II 
describes the system. Section III presents Sound sources 
localization and beamforming algorithms used in this work. 
Section IV presents the proposed algorithms block diagram 
and their computation burden. Section V presents our 
contribution. Section VI presents the DSB and MVDR 
beamforming. Section VII explains the fuzzy logic ruled based 
classification applied to speaker recognition and tracking. 
Section VIII evaluate the results, discusses their limitation and 
proposes possible improvement. Section IX concludes the 
paper and advices on further work. 

II. SYSTEM DESCRIPTION 

A. System Configuration 
The localization system is composed of 8 equidistant 

microphones operating in a 3m by 3m FOV with a 10cm by 
10cm resolution. For illustration purpose Figure 2 shows a 
miniature FOV composed of 4 microphones with two actives 
Sound sources (blue and red). 

 
Figure 2. Two dimensions 16x16 small square FOV with 4 microphones 

and two speakers. 

Referring to the FOV size and resolution given above the 
number of small square (NOSS) in the FOV is computed by 
equation (1).   L.H= 9  = 0.01. NOSS = 900. 

  (1) 

Equation (2) models the far field approximation used in 
this work [13]. 

  (2) 

Where N represents the number of microphones, d the 
distance between microphones fixed to 4 cm, λ is the 
wavelength and r is the radial distance from the sound source 
to the microphone aperture. 

B. System Constraints and Signals Model 
In real-time applications execution speed is an important 

concept, the algorithm that requires the least logic resources 
and achieve the highest throughput for a given task is 
preferred. An algorithmic and architectural approach is 
proposed to respect real-time constraint. A frame of 512 or 
1024 samples should be processed respectively at 11.6 or 
23.16 ms for a sampling frequency of 44.1 KHz. 

First a brief signals model and notation before describing 
localization algorithms [14] is presented. ( )H denotes 
Hermitian transpose. ( )* denotes the complex conjugate. Let 

L
1i})({ �tiS be the temporal waveforms of the sources, where L 

is the number of sources. The assumption is made that the 
sources are independent and stationary over several adjacent 
Ns samples intervals which is mathematically translated as: 

0)]().([ * �� lnSnSE ji The signal at the ith microphone is 

modeled as in equation (3). 

 )()()( tntsatX iiiii ��� �  (3) 

Where ia is the distance attenuation coefficients, t is the time 
index, i� is the time delays of arrival (TDOA) at the 
microphone and )(tni  is the noise sensed at the ith 
microphone. 

III. SOUND SOURCE LOCALIZATION AND BEAMFOMING 
ALGORITHMS 

One of the most important functionalities of microphone 
arrays is to extract the speech of interest from its observation 
corrupted by noise, reverberation, and competing sound 
sources. This is done by aiming the beam towards the desired 
sound source [15]. The purpose of any beamforming algorithm 
is to determine the DOA of one or more signals [16]. Multiple 
localization algorithms are explored in this work, the MVDR 
the GCC and DSB are combined to create a robust tracking 
algorithm for a real-time application. 
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There are two major groups of microphone-array 
processing algorithms: time-invariant and adaptive [17]. The 
first group is fast and simple to get a real-time 
implementation. The second group acoustic adaptive 
algorithms are able to automatically adapt their response to 
different weightings or time-delays. However, they require 
more CPU power and are complex to implement. In this work 
both approaches are used. 

1) GCC-PHAT 
The Generalized Cross Correlation (GCC) algorithm 

returns an angle ф which is the sound source DOA. To 
compute ф, the GCC uses the estimation of the temporal shift 
between two microphones that lead to the maximum cross-
correlation function between them as in equation (4):  

 )
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where β is a coefficient factor in the interval of ] 0, 1[,
)(txi  and )(tx j  are the signals at the microphone (i,j), t and k 

are time index. For a single sound source, the DOA can be 
estimated by finding the index of the maximum coefficient of 
R(k) which is modeled as in equation (5).  

 )(maxarg kRkij ��  (5) 

The Sound source DOA is modeled as in the equation (6)  
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C is the Sound propagation speed and Fs is the sampling 
frequency. However when they are multiple sound sources, 
the estimation of the DOAs is very difficult due to the cross-
correlation among different sound sources. For example let 

)(1 ts  and )(2 ts  be the signals that come from two sound 
sources. Then the signals received at the microphone )(txi  
and )(tx j  are written as in equation (7) at the microphone i. 

 )()()( ijiiiii tsbtsatX 
� ����  (7) 

As in equation (8) at the microphone j 

 )()()( jjjjijj tsbtsatX 
� ����  (8) 

where t is the time index, � and 
 are the time delay of 
arrival, a,b are the distance attenuation coefficients. Equation 
(4) numerator is then modeled as in equation (9) [18]. 
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The GCC method can accurately estimate the DOAs when 
two signals are uncorrelated. However, when two signals are 
correlated as in the real environments, the GCC method fails 

to estimates the correct DOA [18]. Therefore an energy based 
computation approach will be proposed using the GCC results. 

2) DSB - SRP (Time Domain Approach) 
The DSB is a beamforming algorithm that can be used in 

conjunction with a FOV to compute a Steered Response 
Power (SRP). The point of the FOV with the highest SRP is 
the sound source location. The SRP is computed as in equation 
(10).  
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The SRP is computed for every point i of the NOSS that 
vary as follow:  (0< i < NOSS ). is the weight of the point i 
relative to microphone n computed as in equation(11). 
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ind is the distance of the thi small square  (SS) to the thn
microphone. It is computed as in equation (12): 

 22 )()( niniin yyxxd ����  (12) 

The pairs and  are respectively the 
coordinates of point i and the microphone n. 

3) MVDR 
The main approach to find the DOA of the sound source 

using MVDR is to steer at every direction of the FOV and 
compute equation (13). The DOA of the audio signal is found 
when equation (13) reaches its maximum [19][20].  
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Equation (14) is the signal xxR coherent matrix. 
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01xx� is the normalized correlation between the 

microphone (0) and (1) and defined as in equation (15):  
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d represents the propagation vector of the desired speech 
signal for a linear sensor array and is defined in equation (16). 
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In the far-field approximation the coefficients )...( 1 N��
are approximated to 1. �  is computed as in equation (17). 
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MVDRW is the MVDR weight modeled as in equation (18). 
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When replacing 10xx� by 10vv� equation (14) becomes the 

noise coherent matrix vv� .The microphone array will receive 
noise signals that are mainly correlated at low frequencies and 
have approximately the same energy. The complex coherence 
function for such a noise field can be approximated as in 
equation (19): 

 cfd
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f
ij
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where ijd is the distance between the sensors (i,j) and f is the 

frequency [19]. Equation (19), in practice will have the 
tendency to amplify low frequency noise.  To work around 
this issue literature propose to introduce the uncorrelated noise 
variance ( 2

n� ) of the sensors in the computation of the 
coherence function modeled as in equation (20). 
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IV. BLOCK DIAGRAMAND ALGORITHM COMPUTATIONAL 
COMPARISON 

The DSB, GCC and MVDR are respectively presented in 
Figure 3, 4 and 6. They all share the same demodulator (Δ-Σ), 
framing, Voice Activity Detector (VAD) and the FFT. Figure 
3 shows a proposed block diagram to implement and specially 
analyze both the GCC and DSB algorithms in terms of their 
computational complexity. The branch where the output is an 
“incidence angle”, represents the GCC and the one with 
“source localization” output represents the DSB.  

 

 
Figure 3. GCC (upper branch) and DSB-Donohue approach (lower 

branch)functional block diagrams. 

 
Figure 4. DOA using GCC  computation of the Steered Power Response. 

 
Figure 5. GCC based energy computationin every direction of the FOV. 

Figure 3 GCC computation approach is only valid when 
one sound source is present in the FOV, for multiple sound 
source tracking the GCC computation using Figure 4 block 
diagram based on energy is computed for every angle of the 
FOV see Figure 5. Figure 5 approach is based on space 
discretization (SD) and modeled as in equation (21).  The 
points such as S which return the highest energy represents the 
Sound sources (DOA). 
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Where XrXs is the cross-correlation between microphones 
signals (r,s), rsW is the denominator of equation (4) and 

sr �� �  is defined as in equation (22) [18]. 

 fs
c

drs
sr .)( ����  (22) 

 
Figure 6. Structure in Frequency-domain broadband beam former by Narrow 

band decomposition [15]. 
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A. DSB Computation Load and Problematic 
The DSB algorithm combines accurate sound source 

localization with the flexibility of having pre-computed 
coefficients. Those coefficients (weight, delay etc…) could 
then be stored in an FPGA BRAM or in an external memory.  
The numbers in Table I are explained in [8]. Table I shows the 
number of DSB operation depending of the NOSS. 

TABLE I 
DSB COMPUTATION BURDEN NS = 512 N = 8 

Localization NOSS = 900 NOSS = 256 
BLKREAD 11 074 500 3 150 080 
MULT 15 207 300 4 325 632 
ADD 11 059 200 3 145 728 
DIV 7 372 800 2 097 152 
SQRT 3 686 400 1 048 576 

 
The DSB computation burden is mainly linked to the 

NOSS defined in equation (1), to the number of microphones 
(N) and the frame length (Ns). Other parameters have a slight 
impact such as the number of sound sources (L) and the 
algorithm used. The DSB throughput is computed using 
equation (23). 

 ).. SqrtvDivuBlkAddMultNCCF read �����  (23) 

where u and v are respectively the number of clock cycles 
necessary to compute a division and square root. In the Table 
II u and v are considered to be equal to 1 for combinatorial IP 
core or more for sequential. DSB is used for localization as it 
is considered to be one of the most robust [14] algorithms. 
However its computation is tedious and long. Table II shows 
that for a system of 8 microphones with a NOSS = 900 even 
with a clock speed of 600 MHz it is impossible to achieve 
real-time localization. 

TABLE II 
DSB THROUGHPUT WITH NOSS = 900 AND N = 8 REAL-TIME = 11.6 MS 

DSB (Clock Speed) 200 MHz 400 MHz 600 MHz 
Throughput  242 ms 121 ms 80.5 ms 

 

B. GCC-PHAT Computational Load 
The computational load of the GCC-PHAT based on 

spaced discretization (SD) is linked to the angular space cover 
by the FOV and to the number of cross-correlation between 
microphones modeled by equation (24).  

  (24) 

P equals 2 and is the number of microphones in the array. 
For N equal to 4, 8, 16, 32 or 64, the cross-correlation , will 
respectively be 6, 28, 120, 496, 2016. The CPU power 
increases drastically with the number of microphones and the 
angular region cover. Table III shows the number of 
sequential operations necessary to compute the GCC using the 
SD approach with ε varying from 0 to 180. 

TABLE III 
GCC COMPUTATION BURDEN BASED ON SPACE DISCRETIZATION N = 8 

Localization GCC + β =1 + Space Scan 
BLKREAD 19 404 
MULT 86 016 
ADD 54 168 
DIV 28 672 
SQRT 14 336 
 
The GCC based on SD computation load in Table III is 

smaller compare to the DSB in Table I and its throughput is 
computed by using Table III and equation (23). Table IV 
shows that less than 10 % of the time required for real-time 
processing is necessary to find the sound source DOA. This 
result will inspire our hybrid algorithm. 

TABLE IV 
GCC DISCRETIZATION APPROACH SEQUENTIAL THROUGHPUT 

GCC (Clock Speed) 200 MHz 400 MHz 600 MHz 
Throughput  1.1  ms 0.51 ms 0.38 ms 

 

C. MVDR Computational Load 
To minimize sound source localization time, MVDR is not 

considered due to its complexity as shown by equation (13) 
computation steps below. 

1) Compute equation (14) correlation matrix whose 
parameters are defined in equation (15), (16) and (17). 

2) Check if the correlation matrix of equation (14)is 
invertible using equation (25). 

 0)det( ��xx  (25) 

3) Compute equation (14) denominator and its inverse. 
4) For all direction of ф  repeat the points (2) and (3). 
 
The three steps described above are time and hardware 

consuming. Thus the MVDR is only used for beamforming 
while the GCC and DSB are used for real-time localization.  

V. CONTRIBUTION 

For any clock speed, the DSB throughputs are far superior 
to the 11.6 ms real-time constraint as shown by Table II. 
Based on this challenge our contribution will be presented. To 
accelerate sound sources localization, this work proposes at 
the algorithmic level a hybrid algorithm that reduces the DSB 
NOSS and at the architectural level increasing buffer size 
provides more computation time. 

A. Algorithmic Contribution 
To detect the DOA of the sound sources, the entire FOV 

region is scanned and the highest energies are selected (see 
Figure 6). Then the search region is restricted to the cone 
delimited by the angles of each sound DOA (see Figure 
2). �  is the localization error which can be limited to one or 
two degree for the primary source and a little bit more for the 
secondary source as the FOV region scanning is done with one 
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degree step. This approach restricts the DSB search spectrum 
which can be mathematically defined using the left and right 
upper corner of Figure 2 denoted respectively  and  
modeled as in equation (26) and (27),  

 )
2/

arctan(1 L
H

��  (26) 

The first search region is delimited by {0, X1, Y1, Z1} 
which represents (  and ) or the region: 

 

 )
2/

arctan(1802 L
H

���  (27) 

The second search region is delimited by {0, X1, Y2, Z2} 
which represents (  and ) or the region: 

 
These search regions must be redefined for each process 

frames. In each region the NOSS is computed using equation 
(28) and (29).Equation (28) is the higher line of the cone. 

 )tan( �	 ���� xnhn  (28) 

Equation (29) is the lower line of the cone 

 )tan( �	 ���� xnhn  (29) 

With an estimation error of ε = 2° for the primary source 
and 10° for the secondary source, the NOSS of both cone in 
Figure 2 is 90. From a NOSS = 900 to 90 the algorithmic 
approach reduce the DSB search spectrum of 90%. After the 
algorithmic contribution, Table II is re-computed with the new 
NOSS, the localization throughput is within the real-time 
constraint for the 600 MHz clock see Table V. The 
architectural approach will then be applied on the algorithmic 
result to achieve real-time with a slower clock and reduce 
power consumption. 

TABLE V 
DSB LOCALIZATION  THROUGHPUT WITH NOSS = 90 AFTER HYBRYD 

ALGORITHMIC COMPUTATION + TABLE IV RESULT 

DSB (Clock Speed) 200 MHz 400 MHz 600 MHz 
Throughput  Serial 25.3 ms 12.5 ms 8.5 ms 

 

B. Architectural Contribution 
The flexibility of the hardware structure proposes to 

implement our hybrid algorithm which can be altered to 
respect the real-time constraint. Figure 4 block diagram has 
two parts: The acquisition modules composed of 
{Microphone, sigma delta filter and VAD} and the 
computation modules composed of {FFT, IFFT, β-PHAT, 
delay and Sum and SRP}. 

1) Acquisition Modules 
For the {Microphone, Sigma Delta, framing} modules few 

can be done to improve their flexibility; however the VAD 

and buffer storage can be duplicated. As stated above speech 
activities normally occupy 60% of the time of a regular 
conversation. Therefore in a 1024 or 2048 buffer use to collect 
data half of them only are usable see Figure 7.  

 
Figure 7. Internal structures of buffer storing data before VAD computation 

Figure 7 presents the hardware structure of the VAD.  
Only 512 samples will be processed out of 1024 samples 
collected. Each half frame VAD is computed as in equation 
(30). The half frame with the highest VAD is processed if   
superior to the VAD threshold. 

  (30) 

where and are the mean and variance modeled asin 
equation (31), (32) and  is a constant with a value . 

  (31) 

is the value of sample  

  (32) 

The first architectural contribution was to increase the 
acquisition buffer size to relax the real-time constraint. The 
time to complete the computation is then increased to 23.21ms 
for a 512 samples frame. Thus the systems clock can be 
reduced to 400 MHz and respect real-time constraint as shown 
in Table V. 

2) Computation Modules 
The second architectural contribution is to duplicate the 

Delay and Sum modules composed of {D, W, �} and SRP in 
Figure 4 to localize the sound sources in parallel. Table VI 
shows that combining an hybrid algorithm to a flexible 
hardware improves drastically the throughput of the system. A 
margin 10.65ms is gained compared to the real-time constraint 
in the worst case scenario 18.96 ms in the best. 

TABLE VI 
DSB THROUGHPUT WITH NOSS = 90 WITH FLEXIBLE HARDWARE 

DSB (Clock Speed) 200 MHz 400 MHz 600 MHz 
Throughput Parallel 12.65 ms 6.25 ms 4.25 ms 

 
Other modules such as: FFT, IFFT or β-phat have a limited 

impact on the throughput. The FFT computation is modeled as 
in equation (33). 

  (33) 
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where  is the input signal,  the spectrum and f the 
frequency. For computation speed, a Fast Fourier Transform 
(FFT) which is a fast DFT algorithm that reduces the 
computing burden from to  is used. Since FFT 
processors using radix-4 architecture have fewer 
multiplications than processors using radix-2 [23], they are 
preferred in order to reduce the memory access rate and 
arithmetic workload, hence, power consumption. After FFT 
the β-PHAT is computed as in equation (34) see Figure 4. 

 �)(

)()(
fX

fXfW �  (34) 

The modified spectrum W(f) is then used as an input to the 
IFFT using equation (35) before computing the SRP defined in 
equation (10).  

 df (35) 

IFFT can be implemented re-using FFT modules by 
inverting the imaginary and real part as shown in Figure (8). 
This methodology increase modules re-usability. More on 
increasing FFT computation speed is found in [24].  

 

 
Figure 8. Computing the IFFT with FFT processing element. 

VI. BEAMFORMING USING DSB OR MVDR 

The signal frequency band needs to be determined to select 
which of the DSB or MVDR beamforming to use.  

A. Sound Frequency Band Determination 
To detect the signal frequency equation (36) or (37) is 

computed. The frequency band[0.3..1.5] is considered low 
frequencyand  [1.5..to higher] KHz  high Frequency. 
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Si denotes the low frequency band and the denominator is 
the signal entire spectrum. Although equation (36) is a good 
approach the division’s computation in hardware is costly. 
Therefore equation (37) is preferred. where p is the number of 
low frequency bin and TH is fixed to 0.5. 
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B. DSB Beamforming 
The DSB beamforming is known to require only limited 

logic resources for its implementation (see Figure 9) [15].  
On the other hand DSB beamforming do not uniformly 

attenuate the noise and interference signals coming from 
direction different from the beamformer’s look direction as it 

was developed for narrow band. One way to circumvent this 
problem is to perform narrowband decomposition and design 
narrowband beamformers independently at each frequency, as 
shown in Figure 7 [15]. Table VII shows the computation load 
of the DSB. 

 
Figure 9. Structure of the Delay and Sum Beamformer[15]. 

TABLE VII 
DSB  BEAMFORMING THROUGHPUT  FOR N = 8 AND NS = 512 

OPERATION DSB Beamforming Burden 
MULT N.Ns 4 096 
ADD Ns(N-1) 3 584 
DIV 0 64 
BLK-READ N(1+Ns) 4 104 

 

C. MVDR Beamforming 
MVDR beamforming is computed as shown in Figure 7, 

for low frequency signals, as it performs better than the DSB. 
However the MVDR computation load compared to the DSB 
is colossal as shown by Table VII compared to Table VIII. 
The DSB and MVDR beamforming computations are not 
dependent on the NOSS but mainly on the frame size and 
number of microphones. 

TABLE VIII 
MVDR BEAMFORMING SERIAL THROUGHPUT  FOR N = 8 AND NS = 512 

OPERATION MVDR BEAM Computation 
MULT (2N+1)N.Ns 69 632 
ADD Ns(N-1)(1+2N) 60 928 
DIV Ns*N 4 096 
BLK-READ N.Ns(N+4) 49 152 

 
MVDR is often coupled to wiener filter. Using wiener post 

filter was suggested by Bitzer and McCowan [19, 24, 25] to 
improve the global performance of the beamformer.  Simmer 
et al express the optimal broadband Minimum Mean Square 
Error (MMSE) filter solution as a classical Minimum Variance 
Distortionless Response (MVDR) beamformer followed by a 
single-channel Wiener which is modeled as in equation (38). 
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where H
MMSEW  is the optimal filter coefficient vector, ss	 and 

nn	 are respectively the (single-channel) target signal and 
noise (after the MVDR noise filtering) auto-power spectrum 
vectors, and vv� is the (multichannel) noise cross-spectral 
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density matrix. The bracketed item in the equation (38) is the 
single-channel Wiener filter part and the remaining item is the 
well known MVDR beamformer [26]. The bracketed 
expression of (38) can be seen as a Wiener transfer function 
modeled as in equation (39). 
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Solving equation (39) required expressing all the different 
parameters. Few assumptions regarding our noise field 
working environments need to be described.  The target signal 
and the noise are uncorrelated, the noise power spectrum is the 
same on all the sensors and the noise is uncorrelated between 
sensors. Under a stationary environment noise, with the noise 
spectral density power ( vv� ), we can express the noise 

spectral density nn	  as in equation (40) 
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Using all the assumptions above ss	 could be 
approximated as in equation (41) below: 
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ij
ss	̂ is an estimation of ss	 using the microphone i and j. 

� mean positive real value, the imaginary part is considered 

to be zero. For N microphones there will be 2
NC ways to 

estimate ss	 . Taking the average improve system robustness at 
the cost of computations load and resource utilization. That 
approach is modeled in equation (42) 
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The same approach is used to estimate the noise spectral 
density. It is modeled as in equation (43) and the average 
value is computed using (44) with the same combination 2

NC . 
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Therefore equation (44) is the average of equation (43). 
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nn	 is then modeled as in  equation (45) 
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Adding Wiener in front the MVDR will not increase the 
system throughput as the necessary parameters are computed 
prior to the MVDR during the GCC as shown in equation (4) 
and (21). 

VII. FUZZY LOGIC ALGORITHM FOR SOUND SOURCE 
TRACKING 

After the sound sources have been localized and separated 
(i.e. the spectral pattern of each one is purged from the 
patterns of the rest via beamforming), the signals incoming 
from localized sound sources are put through the classification 
process. Our speaker identification application consists of two 
distinct stages. These are: feature extraction, where the 
spectrum of the speaker sound signal is transformed into a 
shorter set of features, that reflect the spectral pattern in a 
compact manner; and classification, during which every set of 
features is assigned a class label, representing the person from 
the knowledge base. 

A. Feature Extraction 
Feature extraction is performed in order to obtain a 

compact representation of the signal temporal or spectral 
pattern. This work will focus on pattern analysis in the 
frequency domain to save computation time. There is a great 
variety of spectral features that may be used for pattern 
extraction [27]. In our work we focus on a well known 
technique, which is called Mel-Frequency Cepstral 
Coefficients (MFCC). It is proven to perform well for human 
voice feature extraction and is applied in many audio signal 
processing applications [28]. The MFCC is executed in several 
stages, which are presented in the flow chart of Figure 10. The 
temporal (preprocessed) signal frame is first passed through 
the FFT to obtain its complex spectrum.  

 
Figure 10. Flow chart of MFCC computation. 

The absolute value of the spectrum is then squared for the 
real power spectrum defined as in equation (46).  
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The power spectrum is then transformed into the mel-
scale, defined and modeled as in equation (47).  

 102595 log 1
700mel

ff � �� # �� �
� 
  

(47) 

f is the frequency in Hz and fmel is the frequency warped to the 
mel-scale. This scale models the human auditory system 
which interprets the lower portion of frequencies better than 
the higher one and thus the distribution of higher frequencies 
is less in the mel-scale. Consider the mel-curve of Figure 11. 
(upper) is almost linear up to 1 kHz and logarithmic thereafter. 
The power spectrum is usually warped to mel-frequencies by 
applying a filter bank of triangular overlapping windows 
(Figure 12. lower) modeled as in equation (48). 
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Figure 11. Mel-scaled frequencies (upper), mel filter bank (lower). 

 
The number of filter banks (in Figure 11 lower) specify the 

Mel-energies vector length which vary from (20...40) and are 
modeled as in equation (49). 
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The cepstral coefficients are acquired by applying the 
Discrete Cosine Transform (DCT) to the mel energies using 
equation (50).  
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For l = 1, 2, . . . ,M, where c(l) is the lth MFCC, M is the 
required number of MFCC parameter, kE is the power 
spectrum coefficient[29-30]. The cepstrum holds information 
on the spectral harmonics, e.g. in the case of human voice 
emphasizes the voice pitch. One additional step may be 
performed on the cepstral coefficients, a differentiator over 
several successive cepstral frames can be computed to get the 

delta coefficients, which account for dynamic information of 
coefficient variation. It is modeled as in equation (51) [29]. 
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where 2j+1 is the size of the regression window and c[m] is 
the thm MFCC coefficient [31]. The Mel energies, cepstral 
coefficients and deltas may be used as separate sets of features 
or concatenated into solid feature vector for future analysis. 

B. Fuzzy Classification 
The principal task of the classification algorithm is to 

determine the likelihood of an incoming sample of speech 
belonging to any of the predefined classes of speakers as 
recorded in the knowledge base of the classifier. For speaker 
identification, each speaker’s voice is recorded prior to online 
identification, the speech portions of the recorded signal are 
put through feature extraction, concatenated into the dataset 
and complemented with class labels, that in the future will 
represent the specific speakers. The main features extracted 
using MFCC approaches are:  Mel-Energies, Static Cepstral 
Coefficients and delta coefficients (see Figure 10). In this 
work, only the Mel-Energies and Static Cepstral Coefficients 
are considered to constitute the reference model which is 
defined as in equation (52). The entire rule base is optimized 
offline therefore it does not impact the application throughput. 
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where TY and TZ are the object containing the MEL and  
Static Cepstral Coefficients of length V of n-th frames. The 
fuzzy rule based classifier approach used in this work is highly 
comprehensive for manual data model analysis, unlike the 
black box structure of an Artificial Neural Networks (ANN) 
mapping and also computationally lightweight [32]. The MEL 
and Static Cepstral Coefficients are concatenated as in 
equation (53) prior to speaker recognition computation.  

, - , -VVF CCCCMelMelgggG 11111121 ...,......, ��  (53) 

For better understanding let us consider a classification of 
a feature vectors of length 2 (i.e. F = 2) which means that 
equation (53) has one Mel and one MFCC coefficient. Let 
assume that there are two speakers or classes in the database m 
(T = 2). These two classes are determined by the following 
rules: 
Rule 1:  If (g1) is 11A and (g2) is 21A then y belong to class 

CL (1) and 
Rule 2: If (g1) is 12A and (g2) is 22A then y belong to class 

CL (2). 
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where irA  is the linguistic term of the ith input (i.e. feature 
vector element) associated with the rth rule and CL(r)

(1,..., )rc T�  is the class label assigned to the rth rule  
( 1,...,i F� ). Each linguistic term irA  is numerically 
represented by a membership function ir.  (MF), such as a 
typical triangle-shaped MF determined by three parameters 

ira , irb , irc  (right base, peak and left base of the triangle, 
respectively) that are determined using the speaker database 
model. Equation (54) checks to which triangle the incoming 
database belong.  
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Let consider two incoming feature vectors, one represented 
by a star in Figure 12, which belongs to class 2 and the 
second, represented by a pentagon, which does not belong to 
any class. For the star, the MF values for the terms A11, A21, 
A12 and A22 are: 11 0. � , 21 0. � , 12 0.3. �  and 22 0.8. �
respectively. The class label is assigned in a winner-takes-it-
all manner, where the final label is specified by the rule with 
the highest activation degree r�  as in equation (55). 
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where r� is defined as in equation (56) 
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where F
i� is the conjunction operator corresponding to the 

linguistic operator AND (in our case a product operator)[33]. 
Thus the activation degree for rule 1 is 1 11 21 0� . .� # �  and 
the activation degree for rule 2 - 1 12 22 0.24� . .� # � . The 
class label for the star feature vector is then

argmax{0,0.24} 2y � � . Similarly for the pentagon feature 
vector the MF values for the terms A11, A21, A12 and A22 are

11 0. � , 21 0. � , 12 0. �  and 22 0.4. � . The activation 
degree for rule 1 is 1 11 21 0� . .� # �  and the activation degree 
for rule 2 - 1 12 22 0� . .� # � . The class label is thus 0, which 
means that the vector does not belong to any class (see below 
Figure 12). The parameters { ira , irb , irc } are defined as 
follow 

sk
iir kga

�
� ))(min(  and 

sk
iir kgC

�
� ))(max(  and irb is 

Average of ig and s is the corresponding subset. 

 
Figure 12. Two clusters in a 2D space modeled by triangular MFs 

 
The classifier based on triangle MFs cannot operate on 

samples that fall beyond the rule borders of specified by the 
MF base parameters. This can be fixed if desired by replacing 
the triangular MFs with their nearly equivalent Gaussian 
curves defined as in equation (57). 
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Table IX shows that Figure 10 and Figure 11 computation 
time and their impact on the overall throughput.  

TABLE IX 
FIGURE 11 COMPUTATION LOAD FLOW CHART OF THE MFCC AT 200 MHZ 

OPERATION Computation Throughput 
Spectrum (Ns*5)/2      

 
0.5ms/per 

frame 

Mel-Scaling NML*[ (3Ns/2) -1] 
Logarithm 2*NML 
DCT 4*NML*NDCT+NDCT+NML 
Differentiator J*[2*NDCT+3] 
Similarity 8*NML*NCL 

 
where NML and NDCT are the number of Mel and DCT 
coefficients, NCL is the number of people in the database and 
J is half of the number of frame use for feature extraction. The 
decision branch does not require a series of operations but 
rather some comparisons.  

VIII. RESULTS AND DISCUSSION 

All Tables from I to IX presented above are computed in 
the most pessimistic scenario under the assumption that the 
Hardware that will be used to implement this work has only 
one adder, multiplier, divisor and one square root primitive. 
Therefore the computations are made sequentially. However 
hardware such as FPGAs (Field Programmable Gate Array) 
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have a huge computation power and all the results presented 
could be reduced by 20 to 30 %. The results presented in this 
section are modeled in Matlab using the above mathematical 
expressions. Table X is the overall throughput from the 
speaker localization to its recognition.  

TABLE X 
SPEAKER RECOGNITION THROUGHPUT USING DSB  FOR LOCALIZATION, 

MVDR FOR BEAMFORMING AND MFCC FOR VOICE EXTRACTION FEATURE   
FOR N = 8  NS = 512 FOR A REAL-TIME SPEED CONSTRAINS OF 23.11 MS  

USING DIFFERENT CLOCK SPEED 

Throughput MVDR Beamforming DSB Beamforming 
200 MHz 14.15 ms 13.26 ms 
400 MHz 7.07 ms 6.63 ms 
600 MHz 4.75 ms 4.55 ms 

 
This work has shown that it is possible to combine a 

hybrid algorithm to a flexible hardware architecture to 
successfully locate a particular speaker and track him among 
others using voice recognition technique in real-time. 

Figure 13 shows the localization of two sources at different 
distance of the microphone. It shows that the closer the 
sources are from the microphones the more difficult it is to 
find their DOA see data1 to data 5. The localization accuracy 
becomes reliable beyond 0.5m see data 6 to data 7. Another 
limitation of this work is the angular distance necessary 
between both sources to avoid any masking of one source by 
the other. An angular distance of (20-30) degree is necessary 
meaning that the number of sources in the FOV should be 
limited to 4.  

 

 
Figure 13. Detection of two I sources in the FOV with N = 8 and β = 0.8. 

Figure 13 was drawn using equation (21) and Figure 5 
block diagram and β = 0.8 which in literature represents the 
best value to overcome reverberation [34]. The power 0.8 in 
equation (4) is very challenging to compute in hardware. The 
best approximate value in terms of computation is β = 0.75 = 
3/4. But a logarithmic computation approach can also be 

considered. For instance if Y = P qX , Y can be computed as 
modeled in equation (58). 

 Xbp
q

bY
log

�  
(58) 

The localization of two speakers simultaneously creates a 
dominant speaker, called primary source, which masks totally 
or partially the secondary speaker. Figure 14 shows that the 
DOA localization errors of both speakers depend on the 
angular distance between them and their position in the FOV.  

Figure 14 shows the algorithm estimation error of the 
secondary and primary source location respectively in green 
and in black.  The test is run over 306 frames with the primary 
source exact position varying from 175° to 100° degree with a 
5° degree steps and the secondary source varying from 5° to 
80° with the same step. Results show that the highest error for 
the secondary source is 15 degrees while it is less than 5 
degree for the primary source. 

 

 
Figure 14. Estimation Error of the DOA with two I Source. 

 

Figure 15. Secondary Error comparisons between SRP GCC (Figure 4)  
and DONOHUE (Figure 5). 

 
Figure 15 results represent the localization estimation error 

of the secondary speaker taking into account the interferences 
between speakers using three different algorithms. If due to 
the interferences the secondary speaker is totally masked by 
the primary speaker the error assigned to the frame is 180° as 
it cannot be detected. The algorithms used are: the GCC SRP, 
Donohue in the temporal and frequency domain. Donohue 
algorithm in the Frequency domain outperforms the two other 
algorithms, but the errors due to the interferences are still very 
high. Figure 16 presents a sub array microphone structure to 
resolve the interference issue.  

 

 
Figure 16. Interference Reduction approach between speakers. 
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Figure 17. DSB Directivity. 

 
Figure 18. MVDR Directivity. 

 
MVDR has a better directivity than DSB under 1 KHz as 

shown in Figure 17 compared to Figure 18. Moreover MVDR 
can be coupled with Wiener filter as explained above for 
better results. However, above 1 KHz the DSB and MVDR 
algorithms have similar results; it is then preferable to use 
DSB for its smaller computation load compared to MVDR 
(see Table VII and VIII). 

An accurate localization combine to very directivity 
beamforming algorithm drastically improve speaker 
recognition results. Table XI is computed on the secondary 
speaker (see Figure (14)). The percentage of speakers 
recognized using the DOA angle over 306 frames is 100% for 
90 frames and little least than 90% on 216 frames as shown in  
litterature [9]. Using the DSB after the GCC for localization 
improves drastically the percentage of speaker recognition due 
to the reduced localization error. 

TABLE XI 
PERCENTAGE OF SPEAKER RECOGNIZE USING BEAMFORMING WITH DOA 

ANGLE PER NUMBER OF FRAMES  

NB-FRAMES 90 216 
Percentage 100% 90% 

In this work, the angular distance between both speakers 
need to be superior to 20%  to reduce the effect of 
interferences between them. 

A. Localization Limit and Interference Reduction 
To reduce the 20° degree minimum angular distance 

between speakers a more directive algorithm such as Multiple 
Signal Classification (MUSIC) could be used. The DOA of the 
speakers is modeled as in equation (59).  
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Where d is presented in equation (16) and Q represents the 
matrix of the Eigen vectors. Equation (59) is computed for 
every bin in the frequency domain therefore the DOA on the 
wide frequency band is the average between all the bins and 
modeled as in equation (60). 
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Q is computed as in equation (61). R is the covariance 
matrix which is closely similar to equation (15) and D is a 
diagonal matrix composed of Eigen values. 

 1��QDQR  (61) 

Result of Figure 19 shows sharper peaks compare to 
Figure 13 which mean less interference between speakers.  

 

 
Figure 19. Speakers DOA detection using MUSIC algorithm 

 
The sequential computation load of the MUSIC algorithm 

is presented in Table XII 

TABLE XII 
MUSIC SERIAL THROUGHPUT  FOR N = 8 AND NS = 512 

Operation MUSIC Localization Burden 
BLKREAD NN[Ns.cpl+2] + N[N+1] 

1 043 667 
MULT NN[(Ns-1)(CPL-1)]+(N-1)(NN-1) 
ADD N*N  
DIV N*N*(2Ns+3N+4) 
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Beside the higher throughput of the MUSIC algorithm 
compare to GCC (see Table XIII and Table IV), the need to 
know the number of speakers in the FOV before the 
computation of MUSIC algorithm presents its main drawback. 
This issue could be resolved by using equation (62) which 
represents the minimum description length (MDL) [36]. The 
number of speakers is the point at which equation (62) reach 
its minimum.   

TABLE XIII 
MUSIC SERIAL LOCALIZATION THROUGHPUT  FOR 180 LOCATIONS 

DSB (Clock Speed) 200 MHz 400 MHz 600 MHz 
Throughput Parallel 5.3 ms 2.65 ms 1.8 ms 
 

 �� )()( dLdMDL sNdNd log).2.(.
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L(d) is defined as in equation (62) with d being the number 
of speakers. 
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Another approach to determine the number of speakers 
from a multi speaker speech signal can be based on the 
computation of linear prediction residual (LPE) and Hilbert 
envelope (HE) as defined in [37].  

IX. CONCLUSION AND FURTHER WORK 

Multiple steps from the source acquisition to the tracking 
of the speaker using voice recognition were necessary and 
divided as follow: sources localization, beamforming, features 
extraction and classification. As each block mentioned above 
needs the output of the previous, parallelizing their 
computation is impossible. This work then proposed to reduce 
each block throughput individually using the approach stated 
above to achieve speaker tracking using voice recognition in 
real-time. 

In further work, interferences between speakers can be 
addressed to allow more than 4 speakers to be located and 
tracked. In the most optimistic scenario, this work can be 
coupled with video localization to allow the tracking to be 
done by voice and face recognition.  
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