PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrogen utilization by steam turbine cycles

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Based on thermodynamic analysis, the paper presents the utilization of hydrogen in steam turbine cycles. Various configurations (GRAZ, TOSHIBA, WESTINGHOUSE and MNRC) proposed in literature are recalculated using the same software and the same thermodynamic functions, thus comparisons can be made. It is possible to achieve efficiency levels of 60% (HHV based) which is at least 10 percent points higher than the efficiency of the most efficient current power units. The investigated systems are characterized by very high specific power (2,200..4,700 kJ/kg), which is much higher (in extreme cases, by an order of magnitude) than the performance of current gas or steam turbines or combined cycles.
Rocznik
Strony
258--264
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
  • Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska Street, 00–665 Warsaw, Poland
Bibliografia
  • [1] J. Kupecki, J. Milewski, A. Szcześniak, R. Bernat, K. Motylinski, Dynamic numerical analysis of cross-, co-, and countercurrent flow configuration of a 1 kw-class solid oxide fuel cell stack, International Journal of Hydrogen Energy 40 (45) (2015) 15834–15844.
  • [2] J. Milewski, M. Wolowicz, K. Badyda, Z. Misztal, 36 kw polimer exchange membrane fuel cell as combined heat and power unit, ECS Transactions 42 (1) (2012) 75–87.
  • [3] J. Milewski, K. Badyda, Z. Misztal, M. Wołowicz, Combined heat and power unit based on polymeric electrolyte membrane fuel cell in a hotel application, Rynek Energii (5) (2010) 118–123.
  • [4] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski, Variant analysis of the structure and parameters of sofc hybrid systems, in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ, 2013, pp. 306–312.
  • [5] C. Mitsugi, A. Harumi, F. Kenzo, Wenet: Japanese hydrogen program, International Journal of Hydrogen Energy 23 (3) (1998) 159–165.
  • [6] S. Malyshenko, A. Gryaznov, N. Filatov, High-pressure h< sub> 2/o< sub> 2-steam generators and their possible applications, International journal of hydrogen energy 29 (6) (2004) 589–596.
  • [7] W. Budzianowski, Modelling of co2 content in the atmosphere until 2300: Influence of energy intensity of gross domestic product and carbon intensity of energy, International Journal of Global Warming 5 (1) (2013) 1–17.
  • [8] R. Chacartegui, B. Monje, D. Sánchez, J. Becerra, S. Campanari, Molten carbonate fuel cell: Towards negative emissions in wastewater treatment chp plants, International Journal of Greenhouse Gas Control 19 (2013) 453–461.
  • [9] J.-H. Wee, Carbon dioxide emission reduction using molten carbonate fuel cell systems, Renewable and Sustainable Energy Reviews 32 (2014) 178–191.
  • [10] J. Milewski, J. Lewandowski, A. Miller, Reducing co2 emissions from a gas turbine power plant by using a molten carbonate fuel cell, Chemical and Process Engineering 29 (4) (2008) 939–954.
  • [11] M. Gambini, M. Vellini, Comparative analysis of h2/o2 cycle power plants based on different hydrogen production systems from fossil fuels, International journal of hydrogen energy 30 (6) (2005) 593–604.
  • [12] J. Stempien, Q. Sun, S. Chan, Performance of power generation extension system based on solid-oxide electrolyzer cells under various design conditions, Energy 55 (2013) 647–657.
  • [13] A. Zamaniyan, F. Joda, A. Behroozsarand, H. Ebrahimi, Application of artificial neural networks (ann) for modeling of industrial hydrogen plant, International Journal of Hydrogen Energy 38 (15) (2013) 6289–6297.
  • [14] J. P. Stempien, Q. Sun, S. H. Chan, Solid oxide electrolyzer cell modeling: A review, Journal of Power Technologies 93 (4) (2013) 216–246.
  • [15] D. Grondin, J. Deseure, P. Ozil, J.-P. Chabriat, B. Grondin- Perez, A. Brisse, Solid oxide electrolysis cell 3d simulation using artificial neural network for cathodic process description, Chemical Engineering Research and Design 91 (1) (2013) 134–140.
  • [16] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal combustion engine fuelled by natural gas operating in distributed generation, Energy Procedia 14 (2012) 1478– 1483.
  • [17] H. Jericha, A new combined gas steam cycle promising up to 60efficiency, in: 15textrmth International Congress on Combustion Engines, 1984.
  • [18] K. Uematsu, H. Mori, H. Sugishita, Topping recuperation cycle for hydrogen combustion turbine in WE-NET, http://www.enaa.or.jp/WE-NET/ronbun/1998/16/1698.htm (1998).
  • [19] H. Moritsuka, E. Koda, Hydrogen-oxygen fired integrated turbine systems – comparison on MORITS and GRAZ, in: Proceedings of the International Gas Turbine Congress, no. TS- 18, 1999, pp. 401–404.
  • [20] V. Desideri, P. Ercolani, J. Yan, Thermodynamic analisis of hydrogen cmbustion turbine cycles, in: International Gas Turbine Congerss & Exibition, 2001, pp. 2001–GT–95.
  • [21] R. Bannister, A. Newby, W.-C. Yang, Development of a hydrogen-fueled combustion turbine cycle for power generation, in: ASME International Gas Turbine & Aeroengine Congress & Exhibition, 1997, pp. 97–GT–14.
  • [22] A. Miller, J. Milewski, S. Kiryk, Remarks on hydrogen fueled combustion turbine cycle, in: Proceedings of the Second International Scientific Symposium Compower, 2000, pp. 239 -248.
  • [23] T. Bartela, A. Skorek-Osikowska, J. Kotowicz, Economic analysis of a supercritical coal-fired chp plant integrated with an absorption carbon capture installation, Energy 64 (2014) 513–523.
  • [24] S. Kiryk, A. Miller, Calculation of steam and water thermodynamic properties in high temperature and pressure conditions – ITC-PAR calculation routines, Scientific Leaflets of the Warsaw University of Technology section Mechanics 195.
  • [25] J. Hama, N. Iki, A. Miller, J. Lewandowski, K. Badyda, S. Kiryk, J. Milewski, New efficient hydrogen - fuelled combustion turbine cycle - a study of configuration and performance, in: 14th World Hydrogen Energy Conference, 2002.
  • [26] H. Sugishita, H. Mori, K. Uematsu, A study of thermodynamic cycle and system configurations of hydrogen combustion turbines, in: Proceedings of the 11th World Hydrogen Energy Conference, 1996, pp. 1851–1860.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5afe2fb6-30f3-49ee-b129-d575d4da90a1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.