PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Realization of multiplexer logic-based 2-D block firfilter using distributed arithmetic

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a novel systolic two-dimensional (2D) block finite impulse response(FIR) filter architecture using a distributed arithmetic (DA)-based multiplexer look-uptable (DA-MUX-LUT). The proposed DA-MUX-LUT architecture computes the instan-taneous partial-product using the bit vector. The switching-based LUT replaces memory-based structures and reduces hardware complexity. Block processing allows memory reuse,which reduces the number of registers to store the previous input samples. Parallel addersare substituted by a modified carry look-ahead adder (MCLA), which minimizes the delay.Moreover, a resource-sharing concept is introduced to the DA-MUX-LUT block that drastically reduces the adder requirement. The application specific integrated circuit (ASIC)synthesis results show that the proposed DA-MUX-LUT-based 2-D block FIR filter forfilter size 8x8 and block size 4 has 31.22% less delay, 28.66% less area-delay product(ADP), 37.70% less power-delay product (PDP), and occupies almost the same area thanthe existing architecture.
Rocznik
Strony
89--103
Opis fizyczny
Bibliogr. 15 poz., rys., tab.
Twórcy
  • Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India
  • Department of Electronics and Communication Engineering, GITAM University,Visakhapatnam, India;
Bibliografia
  • 1. D.J. Allred, H. Yoo, V Krishnan, W. Huang, D.W. Anderson, LMS adaptive filters using distributed arithmetic for high throughput, IEEE Transactions on Circuits and Systems I: Regular Papers , 52 (7): 1327–1337, doi: 10.1109/TCSI.2005.851731.
  • 2. K.K. Parhi, VLSI digital signal processing systems: design and implementation , John Wiley & Sons, 2007.
  • 3. R. Guo, L.S. DeBrunner, Two high-performance adaptive filter implementation schemes using distributed arithmetic, IEEE Transactions on Circuits and Systems II: Express Briefs , 58 (9): 600–604, 2011, doi: 10.1109/TCSII.2011.2161168.
  • 4. M.A. Sid-Ahmed, A systolic realization for 2-D digital filters, IEEE Transactions on Acoustics, Speech, and Signal Processing , 37 (4): 560–565, 1989, doi: 10.1109/29.17537.
  • 5. I.-H. Khoo, H.C. Reddy, L.-D. Van, C.-T. Lin, Generalized formulation of 2-D filter structures without global broadcast for VLSI implementation, [in:] 2010 53rd IEEE International Midwest Symposium on Circuits and Systems , pp. 426–429, IEEE, 2010, doi: 10.1109/MWSCAS.2010.5548755.
  • 6. C.P. Chowdari, J.B. Seventline, An efficient FIR filter architecture implementation using distributed arithmetic (DA) for DSP applications, International Journal of Innovative Technology and Exploring Engineering (IJITEE) , 8 (9S3): 330–337, 2019, doi: 10.35940/iji-tee.I3061.0789S319.
  • 7. P.-Y. Chen, L.-D. Van, H.C. Reddy, I.-H. Khoo Area-efficient 2-D digital filter architectures possessing diagonal and four-fold rotational symmetries, [in:] 2013 9th International Conference on Information, Communications & Signal Processing , pp. 1–5, IEEE, 2013, doi: 10.1109/ICICS.2013.6782888.
  • 8. M. Alawad, M. Lin, Memory-efficient probabilistic 2-D finite impulse response (FIR) filter, IEEE Transactions on Multi-Scale Computing Systems , 4 (1): 69–82, 2017, doi: 10.1109/TMSCS.2017.2695588.
  • 9. B.K. Mohanty, P.K. Meher, S. Al-Maadeed, A. Amira, Memory footprint reduction for power-efficient realization of 2-D finite impulse response filters, IEEE Transactions on Circuits and Systems I: Regular Papers , 61 (1): 120–133, 2014, doi: 10.1109/ TCSI.2013.2265953.
  • 10. P. Kumar, P.C. Shrivastava, M. Tiwari, G.R. Mishra, High-throughput, area-efficient architecture of 2-D block FIR filter using DA algorithm, Circuits, Systems, and Signal Processing , 38 (3): 1099–1113, 2019, doi: 10.1007/s00034-018-0897-2.
  • 11. C.P. Chowdari, J.B. Seventline, Systolic architecture for adaptive block FIR filter for throughput using distributed arithmetic, International Journal of Speech Technology , 23 (3): 549–557, 2020, doi: 10.1007/s10772-020-09745-4.
  • 12. C.P. Chowdari, J.B. Seventline, VLSI implementation of distributed arithmetic based block adaptive finite impulse response filter, Materials Today: Proceedings , 33 (part 7): 3757–3762, 2020, doi: 10.1016/j.matpr.2020.06.206.
  • 13. C.P. Chowdari, J.B. Seventline, Low power implementation of adaptive block FIR filter design using offset binary coding, Materials Today: Proceedings , 2021, doi: 10.1016/j.matpr.2020.12.869.
  • 14. V.K. Odugu, C.V. Narasimhulu, K.S. Prasad, Design and implementation of low complexity circularly symmetric 2D FIR filter architectures, Multidimensional Systems and Signal Processing , 31 : 1385–1410, 2020, doi: 10.1007/s11045-020-00714-3.
  • 15. X. Lou, Y.J. Yu, P.K. Meher, Lower bound analysis and perturbation of critical path for area-time efficient multiple constant multiplications, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems , 36 (2): 313–324, 2017, doi:10.1109/TCAD.2016.2584181.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5afcea5b-72b3-4070-b316-681c5bd235a7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.