Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Uzasadnienie wzorców wpływu czynników geomechanicznych na parametry ścinania formacji nadkładu węgla, wymagającej odgazowania, z dużymi prędkościami posuwu ścian postojowych w Zachodnim Donbasie
Języki publikacji
Abstrakty
The issues of developing ideas about the mechanism of coal mining from gas fields and two components of providing the country with energy carriers are studied: coal mining and methane utilization from coal-bearing stratum. These issues are inextricably linked with the mining of deposits with high-velocity longwall faces. The actual problem of resolving the above contradictions is studied. The patterns of the geomechanical factors influence based on the finite element method (FEM) modeling of the coal-overlaying formation shear parameters are studied from the point of view of substantiating the location schemes for the site outgassing wells at high advance rates of stoping faces in the Western Donbas. The obtained results of computational experiments are compared with the corresponding studies of specialists. The conclusions about the degree of geomechanical factors influence and the need to take them into account are substantiated. Three calculation models have been developed and substantiated in terms of the shape and size of the calculation zone, the rock mass texture, the mechanical properties of its lithotype, the loading conditions at the model boundaries, the characteristics of the link between stresses and deformations in the model elements, and the criteria for determining the limiting state. The significant influence of the longwall face location depth and the mass texture on the shear parameters of the coal-overlaying formation has been proved. Based on the data of computational experiments, the corresponding dependences and regression equations have been obtained. The conducted research makes it possible to choose appropriate location schemes for outgassing wells.
W artykule rozważane są zagadnienia opracowania koncepcji mechanizmu wydobywania węgla ze złóż gazowych oraz dwóch składowych zaopatrzenia kraju w nośniki energii: wydobycie węgla i zagospodarowanie metanu z warstwy węglonośnej. Zagadnienia te są nierozerwalnie związane z eksploatacją złóż przodkami ścianowymi o dużych postępach. Badany jest rzeczywisty problem rozwiązania powyższych sprzeczności. Wzory wpływu czynników geomechanicznych na podstawie modelowania metodą elementów skończonych (MES) parametrów ścinania formacji nadkładkowych badane są pod kątem uzasadnienia schematów lokalizacyjnych dla otworów odgazowujących miejsca przy dużych prędkościach postępu przodków w Zachodnim Donbasie. Uzyskane wyniki eksperymentów obliczeniowych są porównywane z badaniami prowadzonymi przez specjalistów. Wnioski dotyczące stopnia oddziaływania czynników geomechanicznych i konieczności ich uwzględnienia są uzasadnione. Opracowano i uzasadniono trzy modele obliczeniowe pod względem kształtu i wielkości strefy obliczeniowej, tekstury górotworu, właściwości mechanicznych jego litotypu, warunków obciążenia na granicach modelu, charakterystyki związku naprężeń i odkształceń w elementy modelu oraz kryteria wyznaczania stanu granicznego. Wykazano istotny wpływ głębokości zalegania przodka oraz tekstury masy na parametry ścinania formacji nadkładu. Na podstawie danych z eksperymentów obliczeniowych otrzymano odpowiednie zależności i równania regresji. Przeprowadzone badania pozwalają na wybór odpowiednich schematów lokalizacji otworów odgazowujących.
Czasopismo
Rocznik
Tom
Strony
23--32
Opis fizyczny
Bibliogr. 37 poz., rys.
Twórcy
autor
- Dnipro University of Technology; 19 Yavornytskoho Ave., Dnipro, Ukraine
autor
- LLC “DTEK Energy”; 57 Lva Tolstoho St., Kyiv, Ukraine
autor
- Dnipro University of Technology; 19 Yavornytskoho Ave., Dnipro, Ukraine
autor
- Dnipro University of Technology; 19 Yavornytskoho Ave., Dnipro, Ukraine
autor
- LLC “DTEK Energy”; 57 Lva Tolstoho St., Kyiv, Ukraine
Bibliografia
- 1. Moellerherm, S., Kretschmann, J., Tiganj, J., & Poplawski, M. (2022). Post-mining Challenges and Knowledge Transfer for the Ukrainian coal industry. IOP Conference Series: Earth and Environmental Science, 970(1), 012034). https://doi.org/10.1088/1755-1315/970/1/012034
- 2. Bazaluk, O., Ashcheulova, O., Mamaikin, O., Khorolskyi, A., Lozynskyi, V., & Saik, P. (2022). Innovative activities in the sphere of mining process management. Frontiers in Environmental Science, (10), 878977. https://doi. org/10.3389/fenvs.2022.878977
- 3. Pivnyak, G., Bondarenko, V., & Kovalevska, I. (2015). New developments in mining engineering 2015: Theoretical and practical solutions of mineral resources mining, 607. https://doi.org/10.1201/b19901
- 4. Miletenko, N.A. (2022). Improvement and systematization of principles and process flows in mineral mining. Eurasian Mining, (1), 41-45. https://doi.org/10.17580/em.2022.01.08
- 5. Tong, M., Dong, J., Luo, X., Yin, D., & Duan, H. (2022). Coal consumption forecasting using an optimized grey model: The case of the world's top three coal consumers. Energy, 242, 122786. https://doi.org/10.1016/j.energy. 2021.122786
- 6. Serdaliyev, Y., Iskakov, Y., Bakhramov, B., & Amanzholov, D. (2022). Research into the influence of the thin ore body occurrence elements and stope parameters on loss and dilution values. Mining of Mineral Deposits, 16(4), 56- 64. https://doi.org/10.33271/mining16.04.056
- 7. Amralinova, B.B., Frolova, O.V., Mataibaeva, I.E., Agaliyeva, B.B., & Khromykh, S.V. (2021). Mineralization of rare metals in the lakes. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 16-21. https://doi.org/10.33271/ nvngu/2021-5/016
- 8. Sepehri, M., Apel, D. B., Adeeb, S., Leveille, P., & Hall, R. A. (2020). Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic finite element model. Engineering Geology, 266, 105457. https://doi.org/10.1016/j.enggeo.2019.105457
- 9. Dudek, M., Tajduś, K., Misa, R., & Sroka, A. (2020). Predicting of land surface uplift caused by the flooding of underground coal mines - A case study. International Journal of Rock Mechanics and Mining Sciences, 132, 104377. https://doi.org/10.1016/j.ijrmms.2020.104377
- 10. Utemaganbetov, Z.S. (2021). Boundary condition transfer method (Thomas algorithm) numerical solution of a mixed boundary value problem for second-order linear differential equations. Engineering Journal of Satbayev University, 143(6), 162-173. https://doi.org/10.51301/vest.su.2021.i6.21
- 11. Wu, N., Liang, Z., Zhang, Z., Li, S., & Lang, Y. (2022). Development and verification of three-dimensional equivalent discrete fracture network modelling based on the finite element method. Engineering Geology, 306, 106759. https://doi.org/10.1016/j.enggeo.2022.106759
- 12. Snihur, V., Bondarenko, V., Kovalevska, I., Husiev, O., & Shaikhlislamova, I. (2022). Optimization solution substantiation for resource-saving maintenance of workings. Mining of Mineral Deposits, 16(1), 9-18. https://doi. org/10.33271/mining16.01.009
- 13. Bondarenko, V., Kovalevska, I., Symanovych, G., Sotskov, V., Barabash, M. (2018). Geomechanics of interference between the operation modes of mine working support elements at their loading. Mining Science, (25), 219-235. https://doi.org/10.5277/msc182515
- 14. Zhulay Y., Zberovskiy V., Angelovskiy A., & Chugunkov I. (2012). Hydrodynamic cavitation in energy-saving technological processes of mining sector. Geomechanical Processes During Underground Miming – Proceedings of the School of Underground Mining, 51-56. https://doi.org/10.1201/b13157
- 15. Bondarenko. V., Kovalevs’ka, I., Svystun, R., & Cherednichenko, Yu. (2013). Optimal parameters of wall bolts computation in the united bearing system of extraction workings frame-bolt support. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 5-9. https://doi.org/10.1201/b16354-2
- 16. Krykovskyi, O., Krykovska, V., & Skipochka, S. (2021). Interaction of rock-bolt supports while weak rock reinforcing by means of injection rock bolts. Mining of Mineral Deposits, 15(4), 8-14. https://doi.org/10.33271/mining15.04.008
- 17. Kovalevs’ka I., Vivcharenko, V., & Snigur, V. (2013). Specifics of percarbonic rock mass displacement in longwalls end areas and extraction workings. Annual Scientific-Technical Collection – Mining of Mineral Deposits, 29-33. https://doi.org/10.1201/b16354-2
- 18. Bondarenko, V., Kovalevska, I., Cawood, F., Husiev, O., Snihur, V. & Jimu, D. (2021). Development and testing of an algorithm for calculating the load on support of mine workings. Mining of Mineral Deposits, 15(1), 1-10. https:// doi.org/10.33271/mining15.01.001
- 19. Skipochka, S. (2019). Conceptual basis of mining intensification by the geomechanical factor. E3S Web of Conferences, (109), 00089. https://doi.org/10.1051/e3sconf/201910900089
- 20. Prusek, S., Rajwa, S., Wrana, A., & Krzemień, A. (2017). Assessment of roof fall risk in longwall coal mines. International Journal of Mining, Reclamation and Environment, 31(8), 558-574. https://doi.org/10.1080/17480930.2016.1200897
- 21. Małkowski, P., Niedbalski, Z., & Balarabe, T. (2021). A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: a case study. International Journal of Coal Science & Technology, (8), 312-323. https://doi.org/10.1007/s40789-020-00369-2
- 22. Sedina, S., Altayeva, A., Shamganova, L., & Abdykarimova, G. (2022). Rock mass management to ensure safe deposit development based on comprehensive research within the framework of the geomechanical model development. Mining of Mineral Deposits, 16(2), 103-109. https://doi.org/10.33271/mining16.02.103
- 23. Malanchuk, Y., Moshynskyi, V., Khrystyuk, A., Malanchuk, Z., Korniienko, V., & Abdiev, A. (2022). Analysis of the regularities of basalt open-pit fissility for energy efficiency of ore preparation. Mining of Mineral Deposits, 16(1), 68-76. https://doi.org/10.33271/mining16.01.068
- 24. Bitimbayev, M.Zh., Rysbekov, K.B., Akhmetkanov, D.K., Kunayev, M.S. & Elemesov, K.K. (2022). The role and importance of chemical elements clarks in the practical expanded reproduction of mineral resources. Engineering Journal of Satbayev University, 1(144), 47-54. https://doi.org/10.51301/ejsu.2022.i1.08
- 25. Lu, J., Jiang, C., Jin, Z., Wang, W., Zhuang, W. & Yu, H. (2021). Three-dimensional physical model experiment of mining-induced deformation and failure characteristics of roof and floor in deep underground coal seams. Process Safety and Environmental Protection, 150, 400-415. https://doi.org/10.1016/j.psep.2021.04.029
- 26. Sakhno, I., Liashok, Ia., Sakhno, S., & Isaienkov, O. (2022). Method for controlling the floor heave in mine roadways of underground coal mines. Mining of Mineral Deposits, 16(4), 1-10. https://doi.org/10.33271/mining16.04.001
- 27. Pysmennyi, S., Fedko, M., Chukharev, S., Rysbekov, K., Kyelgyenbai, K., & Anastasov, D. (2022). Technology for mining of complex-structured bodies of stable and unstable ores. IOP Conference Series: Earth and Environmental Science, 970(1), 012040. https://doi.org/10.1088/1755-1315/970/1/012040
- 28. Smoliński, A. (2022). Research into Impact of Leaving Waste Rocks in the Mined-Out Space on the Geomechanical State of the Rock Mass Surrounding the Longwall Face. Energies, 15(24), 9522. https://doi.org/10.3390/en15249522
- 29. Shashenko, A., Gapieiev, S., & Solodyankin, A. (2009). Numerical simulation of the elastic-plastic state of rock mass around horizontal workings. Archives of Mining Sciences, 54(2), 341-348.
- 30. Pivnyak, G., Bondarenko, V., Kovalevs’ka, I. & Illiashov, M. (2012). Geomechanical processes during underground mining. London, United Kingdom: CRC Press, Taylor & Francis Group. https://doi.org/10.1201/b13157
- 31. Bondarenko, V., Kovalevska, I., Symanovych, H., Barabash, M., & Snihur, V. (2018). Аssessment of parting rocks weak zones under the joint and downward mining of coal seams. E3S Web of Conferences, (66), 03001. https://doi. org/10.1051/e3sconf/20186603001
- 32. Ishchenko, K.C., Krukovskyi O.P., Krukovska V.V., & Ishchenko, O.K. (2012). Fizychne i chyselne modeliuvannia napruzheno-deformovanoho stanu masyvu hirskykh porid u zaboi vyrobky. Viznyk Natsionalnoho Hirnychoho Universytetu, (2), 85-91.
- 33. Dyczko, A., Kamiński, P., Jarosz, J., Rak, Z., Jasiulek, D., & Sinka, T. (2021). Monitoring of roof bolting as an element of the project of the introduction of roof bolting in polish coal mines-case study. Energies, 15(1), 95. https:// doi.org/10.3390/en15010095
- 34. Usachenko, B.M. (1979). Svoystva porod i ustoychivost gornykh vyrabotok. Kiїv: Naukova dumka, 136 p.
- 35. Usachenko, B.M., Cherednichenko, V.P., & Golovchanskiy, I.E. (1990). Geomekhanika okhrany vyrabotok v slabometamorfizovannykh porodakh. Kiїv: Naukova dumka, 144 p.
- 36. SOU 10.1.00185790.011:2007. (2008). Pidhotovchi vyrobky na polohykh plastakh. Vybir kriplennia, sposobiv i zasobiv okhorony. Standart Minvuhlepromu Ukrainy. Donetsk: Vydavnytstvo DonVUHI, 114 p.
- 37. Barsanescu, P. D. & Comanici, A. M. (2017). von Mises hypothesis revised. Acta Mechanica, 228, 433-446. https:// doi.org/10.1007/s00707-016-1706-2
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5af8740b-018c-492d-96e6-294ee68084e1