PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of temperature in removing of anions in solution on biochar using Zea mays stalks as a precursor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biochar was prepared from corn (Zea mays) stalks and impregnated with sulfuric acid. The biomass was impregnated for 24 h with a 50% solution of H2SO4 with impregnation ratios 1:2 (B 1:2) and 1:3 p/v (B 1:3); then, it was carbonized in a muffle furnace at 520°C for 30 min with a 10°C per min ramp. The adsorption capacity to remove anions (nitrate, sulfate, and phosphate) in an aqueous solution was evaluated by varying the temperature. The adsorption mechanism was studied by determining the thermodynamic parameters: Gibbs free energy (ΔGº), enthalpy (ΔHº) and entropy (ΔSº) standard. The biochars were characterized by Scanning Electron Microscopy-Energy Dispersive X-Ray Spectroscopy (SEM-EDS) analysis and were found to exhibit a heterogeneous surface and porous nature, with C, O, S, and Si. The experiments in the batch system showed the best performance of B 1: 2 in the removal of the three anions occurred at 303 K, while B 1: 3 had the best performance at 298 K. From the thermodynamic parameters, it was found that the removal processes are endothermic, their mechanism is by chemisorption. It is concluded that synthesized biochar is an excellent alternative to removing nutrient anions present in the solution.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
64--68
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
  • Universidad de Cartagena, Faculty of Engineering, Department of Chemical Engineering, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Faculty of Engineering, Department of Chemical Engineering, Cartagena de Indias, Colombia
  • Universidad de Cartagena, Faculty of Engineering, Department of Food Engineering, Avenida Del Consulado 48-152, Cartagena 130014, Colombia
Bibliografia
  • AKRAM M., XING X., BAOYU G., QINYAN Y., SHANG Y., RIZWAN K., INAM M.A. 2020. Adsorptive removal of phosphate by the bimetallic hydroxide nanocomposites embedded in pomegranate peel. Journal of Environmental Sciences. Vol. 91 p. 189–198. DOI 10.1016/j.jes.2020.02.005.
  • ASTM D 515-60 T tentative methods of test for phosphate in industrial water. In: Manual on industrial water and industrial waste water. West Conshohocken, PA. American Society for Testing and Materials p. 237–245. DOI 10.1520/STP48521S.
  • ASTM D4130-15 Standard test method for sulfate in brackish water, seawater, and brines. West Conshohocken, PA. American Society for Testing and Materials pp. 5. DOI 10.1520/D4130-15.
  • ASTM D7781-14 Standard test method for nitrite-nitrate in water by nitrate reductase. West Conshohocken, PA. American Society for Testing and Materials pp. 7. DOI 10.1520/D7781-14.
  • BAKATULA E.N., RICHARD D., NECULITA C.M., ZAGURY G.J. 2018. Determination of point of zero charge of natural organic materials. Environmental Science and Pollution Research. Vol. 25 p. 7823–7833. DOI 10.1007/s11356-017-1115-7.
  • BASHIR M.T., ALI S., IDRIS A., HARUN R. 2017. Kinetic and thermodynamic study of nitrate adsorption from aqueous solution by lignocellulose-based anion resins. Desalination and Water Treatment. Vol. 62 p. 449–456. DOI 10.5004/ dwt.2017.20136.
  • BEUSEKOM J.E.E. VAN. 2017. Eutrophication. Chapt. 22. In: Handbook on marine environment protection. Science, impacts and sustainable management. Eds. M. Salomon, T. Markus. Springer Intern. Publ. p. 429–445. DOI 10.1007/978-3-319-60156-4_22.
  • BOEYKENS S.P., PIOL M.N., SAMUDIO LEGAL L., SARALEGUI A.B., VÁZQUEZ C. 2017. Eutrophication decrease: Phosphate adsorption processes in presence of nitrates. Journal of Environmental Management Vol. 203 p. 888–895. DOI 10.1016/j.jenvman.2017.05.026.
  • DAI Y., SUN Q., WANG W., LU L., LIU M., LI J., ZHANG Y. 2018. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere. Vol. 211 p. 235–253. DOI 10.1016/j.chemosphere.2018.06.179.
  • DOBROSZ-GÓMEZ I., GÓMEZ M., SANTA C. 2018. Optimización del proceso de adsorción de Cr(VI) sobre carbón activado de origen bituminoso [Optimization of the Cr(VI) adsorption process on bituminous activated carbon]. Información Tecnológica. Vol. 29. No. 6 p. 43–56. DOI 10.4067/S0718-07642018000600043.
  • EL-NAHAS S., SALMAN H.M., SELEEME W.A. 2019. Aluminum building scrap wire, take-out food container, potato peels and bagasse as valueless waste materials for nitrate removal from water supplies. Chemistry Africa. Vol. 2 No. 1 p. 143–162. DOI 10.1007/s42250- 018-00032-z.
  • FAN C., ZHANG Y. 2018. Adsorption isotherms, kinetics and thermo-dynamics of nitrate and phosphate in binary systems on a novel adsorbent derived from corn stalks. Journal of Geochemical Exploration. Vol. 188 p. 95–100. DOI 10.1016/j.gexplo.2018. 01.020.
  • FERNANDO W..A.M., ILANKOON I.M.S.K., SYED T.H., YELLISHETTY M. 2018. Challenges and opportunities in the removal of sulphate ions in contaminated mine water: A review. Minerals Engineering. Vol. 117 p. 74–90. DOI 10.1016/j.mineng.2017.12.004.
  • FOMINA M., GADD G.M. 2014. Biosorption: current perspectives on concept, definition and application. Bioresource Technology Vol. 160 p. 3–14. DOI 10.1016/j.biortech.2013.12.102.
  • HASSAN W., FAROOQ U., AHMAD M., ATHAR M., KHAN M. 2017. Potential biosorbent, haloxylon recurvum plant stems, for the removal of methylene blue dye. Arabian Journal of Chemistry Vol. 10 p. 1512–1522. DOI 10.1016/j.arabjc.2013.05.002.
  • IZQUIERDO M. 2010. Eliminacion de metales pesados en aguas mediante bioadsorcion. Evaluacion de materiales y modelacion del proceso [Elimination of heavy metals in water by bioadsorption. Materials evaluation and process modeling] [online]. PhD Thesis. Universitat de València. ISBN 9788437079813 pp. 352. [Access 20.07.2020]. Available at: http://hdl.handle.net/10803/52130.
  • KARTHIKEYAN P., MEENAKSHI S. 2019. Synthesis and characterization of Zn–Al LDHs/activated carbon composite and its adsorption properties for phosphate and nitrate ions in aqueous medium. Journal of Molecular Liquids Vol. 296, 111766. DOI 10.1016/j. molliq.2019.111766.
  • MANJUNATH S. V., KUMAR M. 2018. Evaluation of single-component and multi-component adsorption of metronidazole, phosphate and nitrate on activated carbon from prosopıs julıflora. Chemical Engineering Journal. Vol. 346 p. 525–534. DOI 10.1016/j.cej. 2018.04.013.
  • MEHDINEJADIANI B., AMININASAB S.M., MANHOOEI L. 2019. Enhanced adsorption of nitrate from water by modified wheat straw: Equilibrium, kinetic and thermodynamic studies. Water Science and Technology. Vol. 79. No. 2 p. 302–313. DOI 10.2166/wst. 2019.047.
  • PAP S., BEZANOVIC V., RADONIC J., BABIC A., SARIC S., ADAMOVIC D., TURK SEKULIC M. 2018. Synthesis of highly-efficient functionalized biochars from fruit industry waste biomass for the removal of chromium and lead. Journal of Molecular Liquids. Vol. 268 p. 315–325. DOI 10.1016/j.molliq.2018.07.072.
  • PEIRIS C., NAYANATHARA O., NAVARATHNA C.M., JAYAWARDHANA Y., NAWALAGE S., BURK G., GUNATILAKE S.R. 2019. The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: A comparative study. RSC Advances. Vol. 9. No. 31 p. 17612– 17622. DOI 10.1039/c9ra02729g.
  • SERESHTI H., ZAMIRI AFSHARIAN E., ESMAEILI BIDHENDI M., RASHIDI NODEH H., AFZAL KAMBOH M., YILMAZ M. 2020. Removal of phosphate and nitrate ions aqueous using strontium magnetic graphene oxide nanocomposite: Isotherms, kinetics, and thermodynamics studies. Environmental Progress and Sustainable Energy. Vol. 39. No. 2, e13332 pp. 12. DOI 10.1002/ep.13332.
  • SHANG Y., GUO K., JIANG P., XU X., GAO B. 2018. Adsorption of phosphate by the cellulose-based biomaterial and its sustained release of laden phosphate in aqueous solution and soil. International Journal of Biological Macromolecules. Vol. 109 p. 524–534. DOI 10.1016/j.ijbiomac.2017.12.118.
  • STEBBINS A., ALGEO T.J., KRYSTYN L., ROWE H., BROOKFIELD M., WILLIAMS J., NYE S.W., HANNIGAN R. 2019. Marine sulfur cycle evidence for upwelling and eutrophic stresses during early Triassic cooling events. Earth-Science Reviews. Vol. 195 p. 68–82. DOI 10.1016/j. earscirev.2018.09.007.
  • WANG L., XU Z., FU Y., CHEN Y., PAN Z., WANG R., TAN Z. 2018. Comparative analysis on adsorption properties and mechanisms of nitrate and phosphate by modified corn stalks. RSC Advances. Vol. 8. No. 64 p. 36468–36476. DOI 10.1039/C8RA06617E.
  • WARD M.H., JONES R.R., BRENDER J.D., DE KOK T.M., WEYER P.J., NOLAN B.T., VILLANUEVA C.M., VAN BREDA S.G. 2018. Drinking water nitrate and human health: An updated review. International Journal of Environmental Research and Public Health. Vol. 15. No. 7, 1557. DOI 10.3390/ijerph15071557.
  • WURTSBAUGH W.A., PAERL H.W., DODDS W.K. 2019. Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. WIREs: Water. Vol. 238 p. 599–606. DOI 10.1002/wat2.1373.
  • YIN Q., LIU M., REN H. 2019. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. Journal of Environmental Management. Vol. 249, 109410. DOI 10.1016/j.jenvman.2019. 109410.
  • ZARE L., GHASEMI-FASAEI R. 2018. Investigation of equilibrium isotherm and kinetic modeling to asses sorption characteristics of nitrate onto palm leaf biochar. Iranian Journal of Chemistry and Chemical Engineering (IJCCE). Vol. 38. No. 5 p. 143–153. DOI 10.30492/IJCCE.2019.31987.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-5af6947e-e323-4e18-a02d-68610ddda014
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.